
AI-supported Code and
Documentation Analysis
for PL/SQL Systems

Bachelor Thesis

Submitted by Julian Köser

In ful�llment of the requirements for the degree
Bachelor of Science (B.Sc.) in Information Technology

To be awarded by the Fontys University of Applied Sciences

Venlo, June 17, 2025



Information Page Graduation Report

Fontys University of Applied Sciences
Technology and Logistics
Tegelseweg 255, 5912 BG Venlo, Netherlands

Type of report: Graduation

Student name: Julian Köser
Student number: 4676661
Study: Bachelor of Science in Business Informatics
Period: January 2025 - June 2025

Company name: Accso - Accelerated Solutions GmbH
Adress: Im Mediapark 6a
Postal code + City: 50670 Köln
Country: Germany
Telephone: 0221 6306910

Company supervisor: Burghof, Axel
Supervising Lecturer: Schwake, Gregor

Word count: 9,987
Company Con�dential: No



STATEMENT OF AUTHENTICITY
Issued by the FTenL Examination Board, September 2017

I, the undersigned, hereby certify that I have compiled and written this document
and the underlying work / pieces of work without assistance from anyone except
the speci�cally assigned academic supervisor. This work is solely my own, and I
am solely responsible for the content, organization, and making of this document
and the underlying work / pieces of work.

I hereby acknowledge that I have read the instructions for preparation and
submission of documents / pieces of work provided by my course / my academic
institution, and I understand that this document and the underlying pieces of
work will not be accepted for evaluation or for the award of academic credits if it
is determined that they have not been prepared in compliance with those
instructions and this statement of authenticity.

I further certify that I did not commit plagiarism, did neither take over nor
paraphrase (digital or printed, translated or original) material (e.g. ideas, data,
pieces of text, �gures, diagrams, tables, recordings, videos, code, ...) produced by
others without correct and complete citation and correct and complete reference
of the source(s). I understand that this document and the underlying work /
pieces of work will not be accepted for evaluation or for the award of academic
credits if it is determined that they embody plagiarism.

Name: Julian Köser

Student number: 4676661

Place / Date: Cologne, 17.06.2025

Signature:



List of Abbreviations

Abbreviation Full Form
AI Arti�cial Intelligence
API Application Programming Interface
FR Functional Requirement
GPU Graphics Processing Unit
IDE Integrated Development Environment
LLM Large Language Model
NFR Non-Functional Requirement
PL/SQL Procedural Language/Structured Query Language
RAG Retrieval-Augmented Generation
SWOT Strengths, Weaknesses, Opportunities, Threats
UI User Interface



Abstract

This report will discuss how Large Language Models (LLMs) can help in
software maintenance challenges, to be excat understanding and
maintaining legacy PL/SQL code. The project presents my graduation
project and was done at the company Accso - Accelerated Solutions GmbH.
It was a proof of concept system designed and implemented which enables
developers to query PL/SQL cod using natural language questions.

This report looks into whether current LLM technology can e�ectively
analyze code relationships when integrated into a Retrieval Augmented
Generation (RAG) architecture, especially with a language like PL/SQL.
The approach taken incorporates carefully selected components: semantic
code chunking methods to preserve code logic, BGE-M3 for embeddings,
and Qdrant for vector storage.

The �nal system demonstrates a AI assisted code analysis which operates in
limited hardware resources, achieves interactive responses in under 3
minutes while receiving responses of high quality. It was tested with
representative PL/SQL code but there were limitations identi�ed regarding
the correct context of chunks.

This project contributes valuable insights to AI assisted code understanding
for legacy systems, identifying both the potential and current limitations of
applying LLM technology to specialized code analysis. Future work will
focus on enhancing context provision, optimizing similarity thresholds, and
implementing entity veri�cation mechanisms to address identi�ed
limitations.
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1. Background

1.1 Company

Accso - Accelerated Solutions specializes in software development and
digital transformation. The company supports clients in modernizing
existing IT systems and developing new digital solutions, focusing on
technical implementation and close collaboration with customers. Accso's
projects cover various areas of software development. A major focus is on
the architecture and structuring of complex IT systems. In large, evolving
software landscapes, a clear structure ensures maintainability and future
development opportunities. Additionally, the company works on process
automation to make work�ows more e�cient and reduce manual tasks.

1.2 Problem Context: Government funding

Application System

Project Background

One of these complex IT modernization projects in which Accso is engaged
includes an especially challenging legacy system that Accso helps maintain
for a government agency. This system serves as a platform for managing
many funding programs that are backed by the state, and it shows the
challenges of maintaining business critical applications developed over
decades.

Business Domain and System Overview

The core of this system is built on Oracle Forms technology and handles
the complete lifecycle of government funding applications.

A lot of sensitive data is managed, ranging from the initial application
through approval, disbursement, and continuous oversight. The system also
needs to follow state regulations, federal guidelines, and audit requirements.
All these processes naturally include a lot of sensitive documentation, which
needs to be handled appropriately. The system processes thousands of
applications annually across di�erent funding programs, each with distinct
eligibility criteria, calculation methods, and approval work�ows. It is only
used within the customer's company.
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System Complexity and Challenges

Through the size of the legacy Oracle Forms application, it presents several
maintenance challenges. The system contains over 5,000 PL/SQL packages
containing business logic, over 500 Oracle Forms modules, and 25 year-old
code. This creates complex interdependencies in the system. Additionally,
there are state speci�c regulations that change over time, di�erent
calculation methods for various funding programs, di�erent requirements
for the audit trails, and over 10,000 applications being processed annually
with di�erent complexity levels.

Limitations of Current Development Tools

While a modern IDE o�ers a lot of help, navigating the code landscape,
there are still many limitations. Oracle IDEs like SQL Developer and
Forms Builder have signi�cant limitations when it comes to search
capabilities, understanding relationships and tracing function calls. For
example a developer only can search for exact text matches and has no
assistance in understanding semantic relationships between code
components. So "what if" questions about code changes aren't possible.

Additionally, to understand the code manual tracing is needed. Of course
it's easy to �nd the functions and packages but each �le needs to be opened
individually and there is a risk of human error, like missing dependencies.

Real World Problem Scenario

To illustrate these challenges in practice, consider the following example
scenario: A critical issue is discovered in the calculation logic for project
funding. The problem a�ects funding disbursements and may impact
compliance with state funding regulations.

Sarah, a developer on the team, needs to navigate herself through over 500
packages to identify in which the faulty calculation is located. She also
needs to understand what other funding Forms might be a�ected across the
500+ Forms modules. After the issue has been resolved, it's also important
to know hich modules need testing afterwards.

Current Manual Process:

At the current moment Sarah of course can search for the
"calculate_funding_amount" function but this only shows where the
function is de�ned and it's direct references. To get the broader picture and
undertand what is a�ected by the function, she needs to start manually
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tracing the relationships:

First, she needs to open each package that references the function, then
identify which other functions call these references. Next, she must trace
these functions to the Forms modules that use them. Finally, she needs to
determine which database tables might be a�ected by any changes. This
process can take days or weeks to trace all dependencies manually across
such a large system, with a high risk of missing critical connections.

Developer Information Needs

Developers working on this system regularly need to answer questions such
as:

� "Which packages call the calculate_funding_amount function?"
� "What tables are modi�ed when processing a small funding application?"
� "Which Forms modules are a�ected by changes to the applicant
validation package?"

� "What funding programs share the same calculation logic?"
� "What dependencies exist between the document veri�cation and
approval processes?"

While this project represents a speci�c case, it re�ects a recurring problem
across many legacy system projects. Understanding the general pattern
helps to better contextualize the approach which is taken in this project.

1.3 Need for a Structured Solution

Thru the complexity of state funding processing, the large amount of data
that needs to be taken into account, and the 25+ year old codebase, the
idea formed to bring AI assisted help into this system. The main motivation
comes from other projects from Accso where AI has been found very useful.

Such a system could help developers quickly understand code relationships,
trace dependencies, and ensure that modi�cations maintain compliance
with state lending regulations.

Therefore, a solution is needed that allows quick information access within
the codebase, taking context and security into account. The goal is to
enable developers to ask natural language questions and receive informative
answers that would reduce time spent on manual search.

Now the di�culty in this project is the system has a sensitive nature and
source code protection requirements that mandate that only locally
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operated AI solutions can be considered. Based on this constraint we can't
use cloud based AI services and it requires a self contained approach that
maintains data sovereignty and security compliance.

This project aims to develop an exploratory prototype system that
leverages large language models (LLMs) to process natural language queries
about the PL/SQL codebase. As a proof of concept, the prototype will
demonstrate whether this approach is feasible and e�ective for improving
code comprehension and maintenance e�ciency. The project acknowledges
the experimental nature of applying LLMs to specialized legacy code and
will document both successes and limitations encountered during
development.
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2. Project Management

This chapter outlines the project management approach used for developing
the AI supported code analysis system. It covers the project objectives, risk
assessment, scope de�nition, stakeholder analysis, development approach,
methodology, and quality assurance measures, all tailored to the
exploratory and proof of concept nature of this work.

2.1 Objective

The primary objective of this project is to develop an experimental
prototype system that enables developers to access and understand critical
information from an existing Oracle-based PL/SQL codebase through
natural language queries. This proof of concept aims to demonstrate the
feasibility of using Large Language Models (LLMs) to assist with code
comprehension and navigation, while acknowledging the limitations and
challenges of such an approach.

Additionally, the project seeks to evaluate the limits of current LLMs in
understanding PL/SQL code and establish a foundation for a potential
future exploration of AI applications in legacy code maintenance.

Success for this project is de�ned as either a working prototype that meets
the later de�ned requirements and shows potential for this approach, or a
clear understanding of the speci�c limitations that prevent such a system
from being fully realized at this time.

In either case, the project will produce valuable insights about the current
state of LLM technology as applied to specialized code comprehension
tasks. The focus is strictly on code comprehension and information
retrieval, not code generation or modi�cation.

2.2 Scope

After de�ning the project objective, the next step was to de�ne clear
boundaries, which help to prevent scope creep later and maintain focus on
the core objective. To de�ne the project scope, the funding system
described in Chapter 1 needed to be analyzed. This helped to identify
which aspects of the AI assisted code analysis challenge could realistically
be addressed within the constraints of a graduation thesis project, and
what would be meaningful evidence for the proof of concept.
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By setting the boundaries, a foundation for decisions about methodology,
technology selection, and success criteria is laid.

In Scope

The following elements are within the scope of this exploratory project,
based on the analysis of the government funding system's complexity:

� Experimental Prototype Development: Creating an initial version
of the system as a proof of concept, tested in a controlled environment
using representative PL/SQL code samples.

� LLM Integration: Exploring how existing LLMs can be applied to
process queries and retrieve relevant sections of PL/SQL code.

� Natural Language Query Support: Evaluating the feasibility of
enabling users to ask technical questions in plain language about the
PL/SQL codebase.

� Feasibility Assessment: Systematically documenting both the
capabilities and limitations of the approach to provide a clear picture of
its potential use.

Out of Scope

The following elements are explicitly excluded from the scope of this proof
of concept project:

� Code Modi�cation or Generation: The system will not modify,
rewrite, refactor, or generate PL/SQL code. It is strictly designed for
code understanding and information retrieval.

� Production Ready Implementation: As a proof of concept, the
system is not expected to meet all the requirements of a production
ready tool in terms of performance, security, or user interface.

� Adaptation to Other Projects: While insights may be applicable
elsewhere, this phase focuses solely on evaluating feasibility for the
current Oracle based system.

� Training Custom LLMs: The project will utilize existing LLMs rather
than training new models from scratch, focusing on evaluating current
capabilities rather than developing new ones.

� Comprehensive Solution: The prototype is not expected to address all
aspects of code comprehension or to handle all possible queries with
perfect accuracy.
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2.3 Stakeholders

With the project scope clearly de�ned, the next step was to identify and
analyze all stakeholders who would be a�ected by or could in�uence the
success of this AI assisted code analysis project. Understanding stakeholder
perspectives became crucial for shaping both the technical approach and
the evaluation criteria for the proof of concept.

Project Team

As the primary researcher and developer for this graduation thesis project,
I am responsible for all aspects of the project's execution, including:

� Designing and implementing the experimental system architecture
� Researching and selecting appropriate LLMs for evaluation
� Structuring test data for e�cient retrieval
� Developing and testing the natural language query system
� Documenting both capabilities and limitations encountered

I am supported by my university supervisor, who provides academic
guidance and ensures the project meets the requirements for my degree
program. Additionally, I have access to experienced professionals at Accso
who o�er domain expertise in LLMs and the Oracle based system. These
mentors provide valuable insights and feedback throughout the development
process, particularly in evaluating the practical utility of the approach.

End Users

The system's feasibility will be evaluated against the needs of three distinct
groups of potential users:

� Developers: Maintain the existing PL/SQL codebase and implement
new features. They would use the system to quickly retrieve relevant
code, dependencies, and references.

� Support Engineers: Answer technical questions and troubleshoot
issues. They require a deep understanding of the codebase and could use
the LLM to assist in identifying relevant code sections.

� Testers: Verify new functionality added to the Oracle based project.
They would use the system to understand the logic behind implemented
changes and validate expected behavior.
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Input from representatives of these groups will be valuable in assessing
whether the prototype demonstrates su�cient potential to warrant further
development beyond this proof of concept stage.

Secondary Stakeholders

� Senior Management: Interested in the potential of AI assisted
approaches to improve maintenance e�ciency for legacy systems.

� Security and IT Compliance: Concerned with ensuring that any AI
based approach to code analysis adheres to security policies when
processing sensitive internal code.

2.4 Approach

After clear goals and scope are set, the project is built on three structured
phases designed to e�ectively explore the feasibility of applying LLMs to
PL/SQL code analysis

Research and Foundation Phase

The project starts with a 6-week phase which focuses on gathering an
information foundation by exploring the problem and the current technical
landscape. Key activities include stakeholder analysis, technology
evaluation of LLMs and embedding models, best practices research,
PL/SQL code structure analysis, and system architecture design. This
phase helps to have an informed and structured starting point for the
development.

Component Development Phase

Afterwards, the development phase starts, which is set for 8 weeks in total.
In this the RAG system is implemented with its core components. Each
component is developed and tested independently before integration,
allowing for focused problem solving and earlier identi�cation of any
limitations.

Evaluation and Optimization Phase

Lastly, there is an 8-week phase in which the system's capabilities are
evaluated, documented, and a �nal feasibility assessment and
recommendations are created.
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2.5 Methodology

This project utilizes a hybrid approach combining waterfall structure and
agile development practices. On the higher level the project is structured
based on the previously mentioned three phases which need to be
completed sequentially to ensure a proper foundation. However, within
individual phases, agile practices are used to maintain �exibility and
separate concerns of each component. This includes 2-week sprints, weekly
Monday meetings, and regular delivery of components.

2.5.1 Milestone Structure

Phase Start
Date

End Date MilestoneKey Deliverables

Research and
Foundation

17.02.2025 30.03.2025 M1 Stakeholder requirements,
technology evaluation, sys-
tem architecture design, risk
assessment, proof-of-concept
validation

Component
Development

01.04.2025 31.05.2025 M2 Code processing pipeline,
BGE-M3 embedding integra-
tion, Qdrant vector database,
query processor, LLM integra-
tion, basic UI

Evaluation
and Opti-
mization

01.06.2025 31.07.2025 M3 Performance optimization,
similarity threshold tun-
ing, comprehensive testing,
accuracy assessment, �nal
feasibility report

Table 2.1: Project Phases and Milestones

9



Figure 2.1: Project Gantt Chart showing phase timeline and component
development schedule

2.5.2 Project Tracking

Project progress is tracked using GitLab's integrated project management
tools. All work is organized into structured issues with detailed
descriptions, task breakdowns, and milestone associations, supporting both
the systematic documentation requirements of the waterfall structure and
the iterative re�nement needs of agile development.

Figure 2.2: Example Issue from GitLab showing structured task management

This systematic approach ensures comprehensive documentation of both
technical implementations and experimental �ndings, supporting the proof
of concept's objective of either demonstrating capability or clearly
documenting current technological limitations.
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2.6 Quality

For this project, quality measures focus on evaluating feasibility rather than
production readiness. The approach acknowledges the experimental nature
of applying LLMs to specialized legacy code and aims to capture insights
about both capabilities and limitations.

Quality Criteria

The prototype's quality will be assessed across dimensions aligned with the
project's exploratory nature:

� Capability Assessment: The system should demonstrate what's
currently possible with LLM technology applied to PL/SQL code, with
traceable responses to relevant codebase parts. Perfect accuracy isn't
expected, but achieved accuracy will indicate feasibility.

� Limitation Documentation: The project should identify and
document areas where current LLM technology struggles with PL/SQL
comprehension, providing insights for future work regardless of overall
success.

� Practical Utility: Even as a proof of concept, the system should
demonstrate su�cient utility to indicate whether the approach has
potential value in real development. This will be assessed through user
feedback rather than strict metrics.

� Technical Feasibility: The implementation should provide clear
evidence about whether the approach is technically viable with current
technology, including any fundamental limitations.

These criteria focus on learning and insight generation rather than
traditional software quality metrics.

Testing Approach

The testing strategy focuses on experimental evaluation rather than
validation against �xed requirements. Testing activities systematically
explore possibilities and identify speci�c limitations:

� Capability Testing: Representative queries will assess what the system
can successfully handle, providing a baseline understanding of current
capabilities.

� Limitation Probing: Deliberate exploration of edge cases and
challenging queries will identify speci�c limitations, which are as
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important to document as successes.

This approach treats the entire project as an experiment, with each test
contributing to overall feasibility understanding.

Acceptance Criteria

The acceptance criteria acknowledge that success can take multiple forms:

� SC-001: Demonstrated Potential: The prototype shows su�cient
capability (correctly answering approximately 60-70% of prede�ned test
queries) indicating promise for further development.

� SC-002: Clear Limitation Identi�cation: The project identi�es
speci�c limitations in applying current LLM technology to PL/SQL code,
providing guidance for future approaches.

� SC-003: Practical Insight Generation: The project produces
documented insights about applying LLMs to legacy code comprehension
that advance understanding in this area.

The prototype should process queries within a reasonable timeframe for
interactive testing, but optimization isn't a primary focus.

The most important outcome is understanding whether and how LLM
technology can be applied to PL/SQL code comprehension, whether
through successful implementation or well documented limitations. This
balanced view acknowledges the project's exploratory nature and ensures
valuable insights even if the technology proves to have signi�cant
limitations for this application.
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3. Project Analysis

This chapter presents the analysis conducted to understand the problem
domain, user needs, and system requirements for the AI supported code
analysis proof of concept. The analysis forms the foundation for the
experimental design and implementation decisions that follow.

3.1 Analysis Approach

The analysis stage explored the Oracle PL/SQL ecosystem, user
requirements by role, and prototype requirements. The analysis looked at
PL/SQL code structure in Oracle 19c to determine LLM understanding
di�culties, held developer interviews to determine pain points, and
reviewed current work�ows to determine LLM use cases. The assessment
took into account both promising advantages and intrinsic limitations of
using LLM technology for niche legacy code.

3.2 Risk

The experimental nature of applying LLMs to specialized legacy code
introduces unique uncertainties that require careful monitoring. The most
critical risk is LLMs' potential limitation in understanding PL/SQL syntax,
which directly a�ects the core feasibility of the proof of concept. To
mitigate this, a controlled test environment with sample code will be
created to evaluate LLM comprehension before proceeding with full
implementation.

13



Table 3.1: Key Risk Assessment

Risk Prob. Impact Level Mitigation Strategy
LLM limitations
in understand-
ing PL/SQL
syntax

High High Critical Create a controlled test envi-
ronment with sample PL/SQL
code �rst; evaluate LLM com-
prehension before full imple-
mentation; select models with
proven code understanding ca-
pabilities

Inaccurate or
misleading re-
sponses

Med High High Implement validation mecha-
nisms; provide source refer-
ences; continuous testing

Complex code
interpretation
challenges

High Med High Use structured parsing; re�ne
query-matching logic; create
specialized embeddings

Security con-
cerns

Med High High Design for local execution; im-
plement access controls; ensure
security compliance

Timeline con-
straints

High Med High Use iterative approach; clear
milestones; prioritize core func-
tionality

The approach allows for incremental feasibility assessment and adaptation
based on early �ndings. For each identi�ed risk, speci�c mitigation
strategies have been developed that acknowledge the project's experimental
nature. The risk matrix will be reviewed regularly throughout development,
ensuring the project delivers valuable insights even if current LLM
technology proves to have signi�cant limitations for this application.

3.3 Domain Model

The domain model captures the key entities and relationships in the
proposed AI supported code analysis system. Figure 3.1 illustrates how
these components would interact in an experimental implementation.

The model identi�es several key components that would need to work
together in the proof of concept system. The AI Analysis System serves as
the core component that would process queries, retrieve information, and
generate responses. Various types of system users would interact with the
prototype through queries and responses. The large language model would

14



Figure 3.1: Domain Model of the AI-Supported Code Analysis System

assist in processing these queries and generating appropriate responses.
The system would need to understand Oracle 19i Components including
Forms Modules, PL/SQL Packages, Database Objects, and Data
Management elements. Finally, various forms of documentation would be
consulted to augment code understanding.

This model serves as a conceptual framework for exploring how an AI
assisted system might interact with the various elements of the legacy
codebase and its users.

3.4 User Stories

Stakeholder interviews and work�ow analysis revealed the following user
stories across roles interacting with the legacy PL/SQL codebase. These
represent potential areas for AI assistance, with feasibility to be determined
through our proof of concept.
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ID Role User Story
US-
001

Developer As a developer, I want to quickly identify all references to
speci�c functions or procedures, in order to understand their
usage across the system.

US-
002

Developer As a developer, I want to understand dependencies between
modules, in order to avoid regression issues when making
changes.

US-
003

Developer As a developer, I want to access historical context and docu-
mentation, in order to maintain code e�ectively.

US-
004

Developer As a developer, I want visibility into database interactions, in
order to know which tables are read or modi�ed by speci�c
code.

US-
005

Tester As a tester, I want to identify all modules a�ected by a speci�c
change, in order to focus testing e�orts e�ciently.

US-
006

Tester As a tester, I want to access information about modi�ed code
blocks, in order to understand what has changed.

US-
007

Tester As a tester, I want to understand code dependencies, in order
to ensure comprehensive test coverage.

US-
008

Support
Engineer

As a support engineer, I want to retrieve known issues related
to speci�c error codes, in order to quickly diagnose problems.

US-
009

Support
Engineer

As a support engineer, I want to access code sections related to
speci�c business processes, in order to troubleshoot e�ectively.

US-
010

Support
Engineer

As a support engineer, I want to understand module depen-
dencies, in order to check for related issues when solving prob-
lems.

Table 3.2: User Stories by Role
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3.5 Use Cases and Focus Selection

Overview of Identi�ed Use Cases

Our analysis identi�ed four key use cases that address the primary needs of
di�erent user roles. These represent potential applications of the technology
that could be explored through the proof of concept:

Figure 3.2: Use Case Diagram for the AI Supported Code Analysis System

The identi�ed use cases include UC-001: Retrieve A�ected Modules, which
enables testers to identify all modules impacted by a speci�c feature or
change; UC-002: View Function Dependencies, which allows developers to
understand the dependencies and relationships of speci�c functions;
UC-003: Query Known Issues, which helps support engineers �nd historical
information about error codes and issues; and UC-004: Filtered Code
Search, which provides all users with the ability to narrow search results by
speci�c criteria.
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Focus Use Case Selection For clarity and focus in this report, we

selected UC-002: View Function Dependencies as our primary use
case for detailed exploration. This use case demonstrates the system's
ability to analyze code structure and relationships, addressing a time
consuming aspect of PL/SQL maintenance.

UC-002: View Function Dependencies

Use Case ID UC-002

Use Case View Function Dependencies

Primary Ac-

tor

Developer

Brief De-

scription

A Developer wants to retrieve a dependency map for a spe-
ci�c PL/SQL function to understand potential side e�ects
before modifying it.

Preconditions • The Developer is authenticated
• The system's knowledge base includes the PL/SQL code-
base and its dependencies

Main Flow 1. Developer opens the AI interface in their IDE
2. Developer enters a query: "Which tables does updateCus-
tomerAddress modify, and which packages call it?"
3. System retrieves relevant code references and documenta-
tion
4. System displays a dependency map showing packages that
call the function and tables it modi�es
5. Developer uses this information to plan changes accord-
ingly

Postconditions Success: The Developer understands all relevant dependen-
cies
Failure: The system can't provide a useful dependency map

Alternative A1: Partial Information Only

• If the system can only �nd partial references, it displays a
note
• Developer may re�ne or expand the query

Table 3.3: UC-002: View Function Dependencies
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3.6 SWOT Analysis

We undertook a SWOT analysis for the evaluation of the strategic position
of the project, with the identi�cation of potential strengths and limitations.

Strengths

It provides a less complex natural language interface than other software. It
integrates code, documentation, and ticket data in a fashion other software
can't. In all cases possible, it can decrease the amount of manual work for
code search and retain institutional memory by making implicit
relationships explicit.

Weaknesses

Current LLM technology may struggle with specialized PL/SQL syntax and
complex relationships. E�ectiveness will likely depend on the quality of
existing documentation and comments. The proof of concept focuses on a
speci�c Oracle based project with limited generalizability. As a prototype,
it will have inherent limitations compared to mature tools.

Opportunities

If this is successful, it can then be used with other legacy code and can
shorten code understanding time considerably. Even the software can be
integrated with the dev platforms and the IDEs. The research would be
going towards the realization of the potential of the LLM for real coding
tasks.

Threats

Security, though locally controlled, remains a concern with AI processing
sensitive code. Some members of the team will resist changing standard
procedures. Bad AI output could propagate errors unless most carefully
validated. Most importantly, there is a question about whether existing
LLM technology can handle sophisticated PL/SQL insight under our local
deployment scenario e�ectively.

This analysis provides a balanced view of the project's potential,
acknowledging that valuable insights will be gained regardless of ultimate
feasibility.
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3.7 Key Requirements

Based on the user needs and selected use case, we identi�ed key
requirements for the AI supported code analysis prototype. These
requirements will guide the experimental implementation and provide
criteria against which to evaluate its feasibility.

3.7.1 Functional Requirements

ID Requirement Description
FR-001 Natural Language

Query Processing
The system shall accept natural language
queries about PL/SQL code structure and
functionality.

FR-002 Code Relationship
Analysis

The system shall attempt to identify relation-
ships between di�erent code modules, includ-
ing function calls and dependencies.

FR-003 Database Impact
Analysis

The system shall provide information about
database tables accessed or modi�ed by
speci�c code, to the extent that current
LLM technology can determine these rela-
tionships.

FR-004 Code Explanation
Generation

The system shall generate human readable
explanations of code functionality based on
its analysis.

FR-005 Source Reference Pro-
vision

The system shall provide source references
for all information included in responses to
enable veri�cation.

Table 3.4: Functional Requirements

3.7.2 Non-Functional Requirements

These requirements acknowledge the experimental nature of the project
while providing clear criteria for evaluating the feasibility of the approach.
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ID Requirement Description
NFR-
001

Response Time Perfor-
mance

The prototype shall process queries and gen-
erate responses within a reasonable time-
frame to allow for interactive testing (target:
under 3 minutes).

NFR-
002

Security and Local Ex-
ecution

The system shall execute entirely within
the company's secure environment to ad-
dress security concerns and maintain data
sovereignty.

NFR-
003

User Interface Simplic-
ity

The system shall provide a simple interface
for query submission to facilitate evaluation
and testing.

NFR-
004

Modular Architecture The system shall be designed with modu-
lar components to facilitate experimentation
with di�erent approaches and technologies.

NFR-
005

Con�dence Indication The system shall indicate con�dence levels
or uncertainty in its responses to help users
appropriately interpret the results.

Table 3.5: Non-Functional Requirements

3.8 Analysis Findings and Implications

The analysis phase revealed several key insights that will guide the design
and implementation of the AI supported code analysis proof of concept.

Key Insights and Design Implications

Although there are di�erent users, they share common needs for
understanding of code, database interactions and historical information. A
key challenge is keeping the context after chunking the code, especially with
large amounts of code. Uncertainty remains about whether LLMs can
e�ectively understand complex PL/SQL code relationships. These �ndings
suggest several design implications: prioritize modular components for
independent testing, preserve semantic relationships between code elements,
incorporate domain speci�c knowledge about PL/SQL where possible,
balance technical accuracy with readability, and clearly indicate con�dence
levels in responses.
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4. System Design

This chapter presents the design of the AI supported code analysis proof of
concept for Oracle PL/SQL code. Building on the requirements and
analysis from the previous chapter, it outlines the experimental system
architecture, key components, and design decisions that will guide our
prototype implementation. The design acknowledges both the potential
capabilities and limitations of applying current LLM technology to
specialized code comprehension tasks.

4.1 System Architecture Overview

The main challenge in this project is that the system needs to give an LLM
access to the PL/SQL codebase and any other information that should be
provided. It is of course possible to just give the LLM code snippets in the
queries directly but then the system wouldn't be able to retrieve
information from other �les or parts in the code. Therefore this proof of
concept's goal is to build a Retrieval Augmented Generation (RAG)
architecture that enhances responses by retrieving relevant code
information before generating answers, following established approaches for
developing RAG based systems [1].

A RAG represents a system that combines information retrieval with a
selected large language model, enabling the system to treat the entire
codebase and associated documentation as a queryable knowledge base
rather than being constrained to individual code fragments.

Additionally, there are full customization possibilities regarding editing
prompts, enhancing security mechanisms and more.

As shown in Figure 4.1, the system consists of �ve key components: a
Frontend interface for query submission, a Query Processor that
orchestrates the �ow, an Embedding Service that vectorizes text, a Vector
Database for storing code representations, and an LLM Response Generator
that produces the �nal answer. This architecture allows for systematic
evaluation of LLM capabilities for PL/SQL code comprehension. How the
RAG system exactly works will be explained in the next section.
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Figure 4.1: Retrieval Augmented Generation (RAG) System Architecture for
the Proof of Concept

4.2 Process Flow

The prototype system operates through two main processes: data ingestion
and query processing. Each process will be implemented in a way that
allows for experimental evaluation of its e�ectiveness with PL/SQL code.

Data Ingestion Process

Before the system can answer queries, it must �rst process and index a
representative sample of the PL/SQL codebase:

1. Code Processing: Selected PL/SQL code samples are processed and
divided into meaningful chunks. This step will test di�erent chunking
strategies to determine which best preserves the semantic structure
needed for dependency analysis.

2. Embedding Generation: Each code chunk is converted into a vector
representation using a code speci�c embedding model. This step will
evaluate how well current embedding models capture the semantics of
specialized PL/SQL code.

3. Vector Storage: The generated embeddings, along with metadata
about the code chunks, are stored in a vector database for e�cient
retrieval. This step will test di�erent metadata schemas to determine
which best supports dependency queries.

4. Incremental Updates: The design includes provisions for handling
code changes by only processing modi�ed portions, though full
implementation of this capability may extend beyond the initial proof of
concept.
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Each step in this process presents speci�c challenges for PL/SQL code that
will be systematically evaluated during the prototype implementation.

Query Processing Flow

When a user submits a query, the experimental system processes it through
the following steps:

Figure 4.2: Query Processing Sequence Diagram for the Prototype

As illustrated in Figure 4.2, the query processing �ow begins when the user
submits a natural language query about the PL/SQL code. The Query
Processor then vectorizes the query using the Embedding Service, testing
how well the embedding model captures the intent of code speci�c
questions. Next, the vectorized query is used to retrieve the most relevant
code chunks from the Vector Database, evaluating the e�ectiveness of
similarity search for PL/SQL code. The retrieved code chunks are passed to
the LLM Response Generator, which augments the original query with this
context. The LLM then attempts to generate a comprehensive response
based on the query and the retrieved code context, testing its ability to
understand and explain PL/SQL dependencies. Finally, the response is
returned to the user through the frontend interface, along with con�dence
indicators and source references to help evaluate accuracy.

This process will allow us to systematically evaluate whether current LLM
technology can e�ectively understand and communicate complex
relationships in PL/SQL code, particularly for the View Function
Dependencies use case.
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4.3 Component Design and Alternatives

Each component addresses speci�c requirements identi�ed during analysis.
Multiple alternatives were evaluated to determine the most promising
approach for the proof of concept. This section focuses on the selections
that were made; how they are implemented and work will be explained in
Chapter 5.

4.3.1 Code Chunking Component

The purpose of this component is to divide the PL/SQL codebase into
segments that preserve a certain structure, critical for retrieving relevant
information in the system.

Chunking Strategy Options

For this we evaluated several chunking strategies [2]:

� Fixed Size Chunking: Divides code into chunks of �xed token count;
computationally cheap and simple but may break logical code units mid
function

� Recursive Chunking: Splits text hierarchically using separators
(paragraphs, sections) to preserve logical structure

� Semantic Chunking: Creates chunks based on content meaning and
logical PL/SQL structure (procedures, functions, packages)

� Document Speci�c Chunking: Tailored approach that leverages
PL/SQL syntax patterns and Oracle speci�c code organization

� Agentic Chunking: Uses AI agents to determine optimal chunk
boundaries based on content analysis

Each approach presents di�erent tradeo�s in implementation complexity,
retrieval e�ectiveness, and the preservation logic.

Selected Approach: Semantic Chunking with ZPA Integration

For the implementation, a semantic chunking approach that preserves
PL/SQL object boundaries was selected. This works with regex pattern
matching, object level boundaries, where each chunk represents a complete
logical unit, and additionally a parser is used which provides code quality
analysis and metadata enrichment.

While this approach requires more implementation e�ort than �xed size
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chunking, it signi�cantly improves dependency analysis quality by
preserving semantic integrity. ZPA was chosen for its local execution
capability, open source license, and PL/SQL specialization, aligning with
security requirements and budget constraints.

4.3.2 Embedding Model Evaluation

The Embedding Service converts code chunks and queries into vector
representations for similarity comparison. Model selection proved critical for
understanding PL/SQL code semantics and retrieving relevant segments.

Model Selection Process

Initially, GraphCodeBERT was selected based on its superior performance
on established code understanding benchmarks [3]. However, during further
testing with PL/SQL queries, limitations were observed in retrieving
semantically relevant business logic.

Testing Methodology

To objectively compare both models, a testing framework was implemented:

� Data Collection: A representative set of PL/SQL code snippets was
selected, covering various database objects (tables, procedures, functions,
triggers).

� Embedding Generation: Each code snippet was processed through
both GraphCodeBERT and BGE-M3 to generate vector representations.

� Similarity Analysis: Cosine similarity metrics were calculated within
and across di�erent code categories.

� Performance Metrics: Contrast ratio (ratio of intra category to inter
category similarity) served as the primary performance metric.

The testing infrastructure utilized Python with scikit learn, numpy, and
Qdrant client libraries, allowing for reproducible evaluation of embedding
quality.
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Comparative Analysis Results

The quantitative analysis revealed signi�cant di�erences between the
models:

Table 4.1: GraphCodeBERT vs. BGE-M3 Performance Comparison

Metric GraphCodeBERT BGE-M3
Samples tested 22 20
Avg intra-category
similarity

0.9186 0.7542

Avg inter-category
similarity

0.8681 0.5570

Contrast ratio 1.0582 1.3540

The results demonstrate that BGE-M3 achieved a signi�cantly better
contrast ratio (1.35 vs. 1.06), indicating superior ability to di�erentiate
between code categories, which is critical for retrieval tasks.

GraphCodeBERT showed very high similarity scores overall (0.80-0.95
range), suggesting its embeddings cluster tightly together, potentially
making discrimination between di�erent code types more di�cult. In
contrast, BGE-M3 produced more distinct embeddings with wider
similarity ranges (minimum similarity of 0.39), creating clearer separation
between di�erent code segments.
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Additionaly the model BGE-M3 o�ers better characteristics to the project
than the GraphCodeBERT model:

Table 4.2: Embedding Model Evaluation Criteria

Criteria GraphCodeBERT BGE-M3
Code Structure
Understanding

Strong data �ow sensitivity;
optimized for function-level
code relationships

More generalized text un-
derstanding with better per-
formance on diverse text
granularities

Language Sup-
port

Primarily trained on 6
programming languages
(Python, Java, JavaScript,
PHP, Ruby, Go); limited
PL/SQL exposure

Supports 100+ languages
with better generalization
to less common languages
like PL/SQL

Context Length Limited context window
(512 tokens) restricting
analysis of longer proce-
dures

Supports up to 8192 to-
kens, allowing complete pro-
cedure analysis

Semantic Search
Performance

Strong for explicit code ref-
erences but weaker for im-
plicit semantic relationships

Higher performance on
MTEB benchmarks (Mas-
sive Text Embedding
Benchmark) for semantic
search tasks

Implementation
Complexity

Requires specialized data
�ow graph extraction for op-
timal performance

Simpler integration with
standard text processing
pipelines

Resource Re-
quirements

Lower memory footprint
but requires specialized
preprocessing

Higher memory require-
ments but more straightfor-
ward processing pipeline

Vector Di�eren-
tiation

High overall similarity (low
contrast ratio of 1.06)

Better category separation
(higher contrast ratio of
1.35)
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Practical Validation

Through the comparative analysis by embedding test PL/SQL code and
going through the characteristics of each model, BGE-M3 was chosen as the
better �tting model for this project.

4.3.3 Vector Database Evaluation

The Vector Database stores and indexes code embeddings for e�cient
similarity search [4].

Vector Database Alternatives and Selection

We considered three primary options:

� Qdrant: Dedicated vector database with advanced �ltering and search
capabilities [5]

� Chroma: Simpler, lightweight database designed for ease of use
� FAISS with SQLite: Custom solution combining Facebook AI
Similarity Search with SQLite for metadata

We selected Qdrant as its �ltering capabilities are well suited to handling
PL/SQL code with multiple schemas and object types. While the prototype
will use a limited code sample, Qdrant's scalability provides a path forward
if successful. Its query capabilities should allow for complex �ltering needed
for dependency analysis.

4.3.4 LLM Component Evaluation

This component produces human readable answers based on retrieved code
chunks and the original query, presenting particular challenges for
understanding specialized PL/SQL syntax.

LLM Alternatives and Evaluation Criteria

To select an LLM model, multiple models were evaluated which include
CodeLlama, Mistral and Qwen. The evaluation criteria include code
comprehension, context utilization, resource e�ciency, and accuracy
indicators. The models were tested by connecting them to the RAG system,
running di�erent queries, and then looking for the best balance of these
criteria for PL/SQL code comprehension.
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Evaluation Framework: While formal benchmarks like HumanEval and
MBPP focus primarily on code generation tasks, our evaluation prioritized
code understanding and explanation capabilities, which are more relevant
for legacy code analysis. The assessment included qualitative testing with
representative PL/SQL queries to evaluate:

� Business Logic Comprehension: Understanding procedural work�ows
and business rules

� Cross Package Relationship Analysis: Identifying dependencies
between di�erent code modules

� Context Utilization: E�ectively using retrieved code chunks to provide
accurate responses

� PL/SQL Syntax Understanding: Handling Oracle speci�c constructs
and patterns

Selected Model: Qwen3-32B

For the prototype implementation, Qwen3-32B was selected based on, code
understanding, resource balancing, and context handling.

The model is speci�cally �ne tuned for code comprehension tasks [6], has
32B parameters which provides complexity without excessive resource
requirements, and has e�ective processing of formatted code chunks and
metadata.

The model currently runs on external GPU infrastructure for development,
with plans to transition to local deployment for production security
requirements.

4.4 Implementation Considerations

Security considerations will in�uence the implementation. All components
will run within the company's secure environment with no code transmitted
externally. The prototype will use a controlled subset of code rather than
the full production codebase, with all queries and responses logged for audit
purposes.

30



5. Implementation

In this chapter the implementation of the components will be explained,
what discoveries were made in the process and what results the
implementations provided. The plan was to create one component at a time
and test them on their own. This approach allowed the system to be as
modular as possible and therefore create an interchangeable system.
Meaning if a component's technology doesn't work as expected or if there is
a need to update a model in the future, this could be done without
a�ecting any other parts of the system.

5.1 Chunking and Parsing

First the chunking and parsing of the PL/SQL code will be explained as
this is the �rst step taken, processing the data available. This also lays the
foundation for how the system continues working with the code in the other
components.

ZPA Integration and Code Quality Analysis

In order to enrich the data, an external tool was used which analyzes the
code quality, is designed for PL/SQL code and runs locally. The tool is
called 'ZPA Runner' 5.1 and �rst the location of the tool needs to be
speci�ed. Afterwards it runs on the directory and produces a JSON �le
with issues like:

� "Line 45: Variable never used"
� "Line 67: SQL injection risk"

1 # Run external tool to analyze code quality

2 zpa_runner = ZpaRunner(zpa_cli_path ="path/to/zpa")

3 zpa_runner.run_analysis(

4 source_dir =" my_plsql_code /",

5 output_file =" analysis_results.json"

6 )

Listing 5.1: Running ZPA analysis

The reason the ZPA runner speci�cally was chosen is that it runs fully
locally, and therefore complying with the security goals. It's also an open
source tool meaning it doesn't cause any licensing costs. Lastly there are
not many parsing tools available for PL/SQL so there weren't many other
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options.

Later this additional information can be used to help with �nding issues in
the codebase. But now the issues and other information need to be added
to the correct �le. For this the parse output function 5.2 is used.

1 # Read the analysis results

2 parser = ZpaOutputParser(source_dir =" my_plsql_code /")

3 processed_data = parser.parse_output (" analysis_results.

json")

4

5 # Result: List of files with their issues

6 processed_data = [

7 {

8 'path ': 'customer.sql ',

9 'content ': 'CREATE FUNCTION get_customer ...',

10 'issues ': [

11 {'line ': 10, 'severity ': 'MAJOR ', 'message ':

'Unused variable '},

12 {'line ': 25, 'severity ': 'MINOR ', 'message ':

'Missing comment '}

13 ]

14 }

15 ]

Listing 5.2: Parsing ZPA output

First thing that is done is reading the previously generated JSON �le,
taking the new scattered code issue and then grouping them by �le.
Afterwards the original source code of said �le is loaded and combined with
the belonging issue group. At this point there is a data structure that
includes the code content and the associated issues. Figure 5.3 shows an
example of processed data output and as seen there is now a cleaner
structure which then will be returned.

1 # Read the analysis results

2 parser = ZpaOutputParser(source_dir =" oracle_samples /")

3 processed_data = parser.parse_output (" analysis_results.

json")

4

5 # Result: List of files with their issues

6 processed_data = [

7 {

8 'path ': 'oracle_samples /01 _tables.sql ',

9 'content ': 'CREATE TABLE employees (\n

employee_id NUMBER (6) PRIMARY KEY ,\n

first_name VARCHAR2 (20) ,\n ...',

10 'issues ': [

11 {
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12 'line ': 84,

13 'severity ': 'MINOR ',

14 'message ': 'Use VARCHAR2 instead of CHAR

.',

15 'ruleId ': 'CharacterDatatypeUsage '

16 }

17 ]

18 }

19 ]

Listing 5.3: processed ZPA data

Semantic Chunking Implementation Since the goal is to save the data

as optimally as possible the code still needs to be separated by some
category. For this the decision was made to chunk based on PL/SQL object
types, where each database object (function, procedure, package, trigger)
forms a natural boundary for chunking.

1 # Look for different types of PL/SQL objects

2 patterns = {

3 'FUNCTION ': r'CREATE\s+FUNCTION\s+(\w+)',

4 'PROCEDURE ': r'CREATE\s+PROCEDURE\s+(\w+)',

5 'PACKAGE ': r'CREATE\s+PACKAGE\s+(\w+)',

6 'TRIGGER ': r'CREATE\s+TRIGGER\s+(\w+)'

7 }

8

9 # For each line , check if it starts a new block

10 for line in file_lines:

11 if "CREATE FUNCTION get_customer" in line:

12 # Start new function block

13 current_block = "FUNCTION_get_customer"

14 elif "END get_customer ;" in line:

15 # End current block , save it as a chunk

16 save_chunk(current_block)

Listing 5.4: How chunker identi�es code blocks

In 5.4 it can be seen how the split by patterns works. Certain keywords are
looked for and based on that �tting chunks can be created.

Processing Results and Metrics

After the data went through all steps structured smaller chunks are
produced, which are ready to be embedded and stored.

In 5.5 an example can be seen of how the data looks initially and how it
looks in the end.
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1 # Input: One large file

2 large_file = """

3 CREATE PACKAGE customer_pkg AS

4 FUNCTION get_name(id NUMBER) RETURN VARCHAR2;

5 PROCEDURE update_address(id NUMBER , addr VARCHAR2);

6 END;

7

8 CREATE PACKAGE BODY customer_pkg AS

9 FUNCTION get_name(id NUMBER) RETURN VARCHAR2 IS

10 -- 200 lines of code here

11 END;

12

13 PROCEDURE update_address(id NUMBER , addr VARCHAR2) IS

14 -- 300 lines of code here

15 END;

16 END;

17 """

18

19 # Output: Multiple smaller chunks

20 chunks = [

21 {

22 'code ': 'CREATE PACKAGE customer_pkg AS...',

23 'block_type ': 'PACKAGE ',

24 'object_name ': 'customer_pkg ',

25 'issues ': []

26 },

27 {

28 'code ': 'FUNCTION get_name(id NUMBER)...',

29 'block_type ': 'FUNCTION ',

30 'object_name ': 'get_name ',

31 'issues ': [{'line ': 5, 'message ': 'Unused

variable '}]

32 }

33 ]

Listing 5.5: Chunker input and output example

5.2 Vector Storage and Retrieval

After everything is chunked, it goes straight to the embedding service. The
previous steps helped to create structured, logical code segments with their
associated metadata and quality issues. Now these text based code chunks
need to be converted into numerical vectors that the AI system can
understand and compare mathematically.

The embedding service transforms each code chunk into a 1024-dimensional
vector representation, enabling semantic similarity search. This means that
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functionally similar PL/SQL code will produce similar vector
representations, regardless of di�erences in variable names or minor
syntactic variations. For example, two functions that both handle customer
address updates will have vectors pointing in similar directions in the
mathematical space, even if one uses di�erent variable names or slightly
di�erent SQL syntax.

BGE-M3 Embedding Implementation

The goal of the Embedding Service is to take code or text and transform it
into a vector dimension.

1 # Input: PL/SQL code as text

2 code_text = """

3 FUNCTION get_customer_name(customer_id NUMBER) RETURN

VARCHAR2 IS

4 customer_name VARCHAR2 (100);

5 BEGIN

6 SELECT name INTO customer_name

7 FROM customers

8 WHERE id = customer_id;

9 RETURN customer_name;

10 END;

11 """

12

13 # Output: A list of 1024 numbers representing this code

14 embedding = [0.123 , -0.456, 0.789, ..., 0.321] # 1024

numbers total

Listing 5.6: Embedding example

5.6 shows basic PL/SQL code at the top, which should be given to the
embedding service. After the service processed the said code, the goal is to
get the 'embedding' result which represents a vector space. To achieve this
multiple steps have to be taken. First the wished embedding model is
loaded as seen in 5.7

1 from sentence_transformers import SentenceTransformer

2

3 # Load a pre -trained model that understands code

4 model = SentenceTransformer ("BAAI/bge -m3")

Listing 5.7: Loading the embedding model

After the model is loaded and ready, the code can already start being
converted into vectors as shown in 5.8.
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1 def embed_code(self , code_text):

2 """ Convert code text to numerical vector """

3

4 # Generate embedding using pre -trained model

5 embedding = self.model.encode(code_text)

6

7 # Convert numpy array to list for JSON serialization

8 return embedding.tolist ()

Listing 5.8: Basic Embedding Function

Additionally, not only one code snippet should be embedded but later on
there will be multiple chunks which need to be embedded separately.

1 # We have many pieces of code

2 code_chunks = [

3 "FUNCTION get_customer_name ...",

4 "PROCEDURE update_address ...",

5 "FUNCTION calculate_total ..."

6 ]

7

8 # Convert each piece to numbers

9 embeddings = []

10 for code in code_chunks:

11 numbers = embed_code(code)

12 embeddings.append(numbers)

Listing 5.9: Embedding chunks

In 5.9 an example list of PL/SQL code chunks can be seen and each of
these is embedded on their own and then added to a list, which will later be
returned by the function. This process is done in batches in the code,
meaning multiple chunks are processed together at once to improve
performance and reduce the computational overhead of loading the model
repeatedly for each individual chunk.

Now that the code is properly embedded it needs to be saved somewhere.
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Qdrant Database Con�guration The Qdrant Database enables e�cient

storage of large quantities of embeddings and searching those. Instead of
going through thousands of lines manually, searching can be done via
semantic search and similar naming.

This works by creating a collection �rst in the database (5.10).

1 def create_collection(self , vector_size: int = 1024):

2 # Create a "folder" in the database for our code

3 self.client.create_collection(

4 collection_name =" plsql_code",

5 vectors_config=VectorParams(size =1024, distance=

Distance.COSINE)

6 )

Listing 5.10: Creating qdrant collection

Here �rst a vector size of 1024 is set and the distance type is set to 'cosine'.

Figure 5.1: Cosine similarity visualization showing how vector angles determine
similarity

The cosine distance measures the angle between two vectors, instead of the
absolute distance. If the angle is smaller or if the vectors point in a similar
direction, it means the vectors are more similar, as illustrated in Figure 5.1
[7].
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After the collection is set and created, the code chunks can already be
stored.

1 def store_chunks(self , chunks):

2 points = []

3 for chunk in chunks:

4 # Take the code information

5 vector = chunk['vector '] # The 1024 numbers

6 metadata = chunk['file '] # File name , function

name , etc.

7

8 # Create a storage point

9 point = PointStruct(

10 id="unique -id -123" ,

11 vector=vector , # The numbers for

searching

12 payload=metadata # Extra information

about the code

13 )

14 points.append(point)

15

16 # Save all points to the database

17 self.client.upsert(collection_name =" plsql_code", points=

points)

Listing 5.11: Storing Chunks in collection

In 5.11 it starts by pulling the vector and the needed metadata, which later
helps to have more accurate searches. But this will be explained in depth
later in the report. Afterwards the Point can be created which is the
central entity that Qdrant uses (one collection consists of multiple points)
[8]. In that Point the vector, metadata and a unique ID which is generated
using uuid64 are stored. Lastly all of this is added to the collection.

Hybrid Search Implementation

This setup enables searching the vectors using normal search 5.12 and
hybrid search 5.13.

1 def search(self , query_vector , limit =5):

2 # Find code chunks with similar numbers

3 results = self.client.search(

4 collection_name =" plsql_code",

5 query_vector=query_vector , # What we're looking

for

6 limit =5 # Give me top 5

matches

7 )
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8

9 return results

Listing 5.12: standard Qdrant search function

In the normal search function 5.12 simply the collection that should be
searched is given, the vectorized query and how many results should be
received. In this case the function will then return the top 5 results based
on semantic search.

1 def hybrid_search(self , query_vector , query_text):

2 # If user asks "show me functions"

3 if "function" in query_text.lower ():

4 # Search only in function code

5 results = self.client.search(

6 query_vector=query_vector ,

7 query_filter=Filter(

8 must=[ FieldCondition(key=" block_type", match

=" FUNCTION ")]

9 )

10 )

11 else:

12 # Search everywhere

13 results = self.search(query_vector)

Listing 5.13: hybrid Qdrant search function

In the hybrid search function 5.13 the �lter from Qdrant can now be
utilized. The �lter then only gives the chunks that contain 'Function' and if
no result is received, it falls back to the normal search function.

Now embeddings for code chunks can be created, stored in Qdrant and
search functions can be run on the database.

5.3 Query Processing and Response Generation

The last component and the most crucial now is processing the users'
queries and generating proper responses. For that multiple steps are needed.
The user's query needs to be embedded, �tting code chunks need to be
retrieved out of the database, this package needs to be sent to the �tting
large language model and a response needs to be received from it.

Query Processing Pipeline

Processing the query from the user is one of the easier steps. In 5.14 �rst
the embedding for it is generated using the previously shown embedding
service. Based on the received vectors the "top k" code chunks are
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retrieved, where "top k" is set to 15. Meaning the top 15 most �tting
chunks are received which gives a broader information output. But to
ensure quality afterwards all results are �ltered out, which are under the set
similarity threshold, which is set to 0.6. Lastly these results are returned by
the function.

1 def process_query(self , query: str) -> List[Dict[str , Any

]]:

2 # Convert user question to numbers

3 query_embedding = self.embedding_service.

generate_query_embedding(query)

4

5 # Search for similar code chunks using hybrid search

6 results = self.storage.hybrid_search(query_embedding ,

query , limit=self.top_k)

7

8 # Filter by similarity threshold (only good matches)

9 filtered_results = [

10 result for result in results

11 if result.get('score ', 0) >= self.

similarity_threshold

12 ]

13

14 return filtered_results

Listing 5.14: Query processing work�ow

Context Formatting and Prompt Engineering Before the �nal prompt

can be passed on it needs to be enriched with instructions and tailored to a
format which the LLM (Large Language Model) can handle better. Here
the user's prompt is also combined with all the relevant code chunks and AI
hallucination is tried to be prevented, which describes when AI generates
information that is incorrect but sounds plausible in the �rst moment.

The challenge is that the retrieved code chunks are in raw database format
with metadata, but the AI needs clean, structured text to understand and
work with the code e�ectively.

1 def build_prompt(self , query: str , chunks: List[Dict[str ,

Any]]) -> Dict[str , Any]:

2 # Format code chunks into readable context

3 context = self._format_context(chunks)

4

5 # Create system prompt with instructions

6 system_prompt = """ You are an Oracle PL/SQL expert

assistant.
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7 Use the following code context to answer the user 's

question.

8

9 CODE CONTEXT:

10 {context}

11

12 IMPORTANT: Only use the exact code provided above

.""". format(context=context)

13

14 return {" system ": system_prompt , "prompt ": query}

Listing 5.15: Building LLM prompts with context

In 5.15 �rst the chunk is sent to the "format context" function 5.16 which
takes the raw chunks from the database and transforms them into a clean,
readable format. In more detail it numbers each code snippet (Snippet
1,2,3...), creates headers showing the function name, type and �le, wraps
the actual code in proper formatting blocks, and lists any quality issues
found below each chunk.

This structured formatting is crucial because the AI needs clear boundaries
to understand where one piece of code ends and another begins.

In the next step, a "system prompt" is created, which represents job
instructions for the AI. This tells the AI it should act as a PL/SQL expert
and, most importantly, only use the exact code that is provided. Then the
formatted code context is embedded and everything is combined with the
user's original question.

The result is a complete prompt that gives the AI both the context
(relevant code) and clear instructions on how to use it.

1 def _format_context(self , chunks):

2 context = ""

3 for i, chunk in enumerate(chunks , 1):

4 # Add chunk header with metadata

5 context += f"### Snippet {i}: {chunk['block_name

']} ({ chunk['block_type ']})\n"

6 context += f"File: {os.path.basename(chunk['

file_path '])}\n"

7

8 # Add the actual code

9 context += f"```sql\n{chunk['code ']}\n```\n"

10

11 # Add any code quality issues

12 if chunk['issues ']:

13 context += "Issues found:\n"

14 for issue in chunk['issues ']:
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15 context += f"- Line {issue['line ']}: {

issue['message ']} ({issue['severity

']})\n"

16

17 context += "\n"

18

19 return context

Listing 5.16: Formatting code for AI understanding

5.4 Complete System Integration

In the last step all these functions and classes are called, in order to send
the data through the pipeline.

End-to-End Processing The code in 5.17 displays the top level calls.

First the query is sent to be fully processed then the prompt is built with
the help of the prompt builder and lastly everything is sent to the chosen
LLM and the response is retrieved.

1 def process_query(self , query: str) -> str:

2 # Step 1: Find relevant code chunks

3 results = self.query_processor.process_query(query)

4

5 # Step 2: Build prompt with context

6 prompt = self.prompt_builder.build_prompt(query , results)

7

8 # Step 3: Generate AI response

9 response = self.llm_client.generate(

10 model ="Qwen/Qwen3 -32B",

11 prompt=prompt ,

12 temperature =0.1 # Low temperature for factual

responses

13 )

14

15 return response

Listing 5.17: Complete RAG pipeline

The llm_client represents a connection service to the large language
model. Currently it is connected to an external GPU which runs the model
Qwen-32B. Of course later no external services will be used but for testing
and implementation it is needed as the laptop where everything is being
developed on doesn't have the necessary hardware.

In the implementation and testing process a few di�erent models were
tested but currently Qwen-32B is used as it's speci�cally �ne tuned for code
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understanding. The "32B" stands for the amount of parameters it uses, in
this case 32 billion, making it capable of understanding complex code
relationships while still having a manageable size compared to larger
models.

The temperature parameter (0.1) controls the randomness of the AI's
responses. A low temperature like 0.1 makes the model more factual, while
higher values (0.7-1.0) would make responses more creative but potentially
less accurate. For code analysis, factual accuracy is prioritized over
creativity.

User Interface Implementation To make the interaction with the

system more accessible and visually appealing the framework "GradioUI" is
being used, which is Python based and made for LLM interactions. The
reason why GradioUI was chosen is because it automatically generates
clean and professional interfaces with minimal code.

How the Web Interface Works

The GradioUI framework creates a locally hosted web server that
developers can access through their browser. The interface consists of two
main components:

� Input Box: Where users type their natural language questions about
the PL/SQL code

� Response Area: Displays the AI generated answers with formatted
code snippets and explanations

When a user submits a query, GradioUI automatically calls the
process_query function, passes the user input through the complete RAG
pipeline, and displays the response in real time.

System Demonstration To illustrate the entire process from user input

to �nal response, here is a step by step walkthrough of how the system
handles a real query:

1 # Step 1: User submits query through web interface

2 user_input = "what packages are used in employee processing"

3

4 # Step 2: System processes query

5 print (" Converting query to vector ...")

6 query_embedding = embedding_service.generate_query_embedding(

user_input)
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7 # Output: [0.123 , -0.456, 0.789 , ...] (1024 numbers)

8

9 print (" Searching for relevant code ...")

10 search_results = storage.hybrid_search(query_embedding ,

user_input , limit =5)

11 # Output: 3 relevant code chunks found with scores: 0.87,

0.82, 0.76

12

13 print (" Generating AI response ...")

14 final_response = llm_client.generate(

15 prompt=formatted_context + user_input ,

16 temperature =0.1

17 )

18

19 # Step 3: Response displayed in web interface

20 print ("Final Response :")

21 print ("""

22 The following packages are used in employee processing:

23 - validation_pkg: Used for validating input data

24 - error_pkg: Used for handling errors

25 - employee_pkg: Used for managing employee records

26 """)

Listing 5.18: Complete system �ow example

This example shows how a simple question triggers the entire pipeline from
vector conversion, to database search, then context formatting, followed by
AI generation and lastly a user friendly response.
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6. Results and Discoveries

This will explain the results from the implementation and the discoveries
that were made. This includes the capabilities of the model and metrics
that were collected. This was done by feeding the system with a sample
PL/SQL base and running queries on the system.

6.1 Evaluation Methodology

Test Dataset

The evaluation used a representative PL/SQL codebase which was
generated by AI. It still maintains logic and functionality and is supposed
to replicate a normal Oracle Forms application. It consists of 11 �les in
total which include:

� Database schemas and table de�nitions
� PL/SQL packages (validation_pkg, error_pkg, employee_pkg)
� Stored procedures and functions
� Database triggers
� Typical enterprise patterns found in legacy systems

Query Categories

After the codebase was embedded and stored successfully in the database, a
set of queries were prompted, as shown in appendix A.3. The goal was to
test the understanding of the procedure work�ows, identifying package
relationships, extracting business rule implementations and receiving simple
information like table de�nitions. To showcase the capabilities and current
limitations of the system, only a few queries and their responses will be
shown and the responses will be shorten. The full responses can be found in
Appendix A.
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6.2 System Performance Results

Successful Query Processing

Process Flow Analysis Query: "What happens when a new hire is

processed"

System Response: The process_new_hire procedure handles the
onboarding of new employees with validation and error handling:

1. Input Parameters: Accepts employee details like name, email, phone,
job ID, department ID, salary, and optional manager ID.

2. Validation Checks:

� Job ID validation using validation_pkg.is_valid_job
� Department ID validation using validation_pkg.is_valid_department
� Salary validation (likely checking ranges for the speci�c job)

3. Employee Creation: If validations pass, calls
employee_pkg.create_employee to insert the new employee record into
the database, generating a new employee ID.

4. Document Creation: Creates an initial document request entry in the
employee_documents table for onboarding documentation.

5. Output: Displays success message and the newly assigned employee ID.

The procedure uses centralized error handling through
error_pkg.handle_error for validation failures and unexpected exceptions,
ensuring consistent error management across the application.

Analysis: The system response demonstrates comprehensive
understanding of the procedure's functionality, going beyond simply listing
steps to explaining the architectural design patterns. This query showcases
advantages over standard IDEs like SQL Developer or PL/SQL Developer,
which only provide code navigation without semantic understanding.

In a work�ow without an AI assistant, the process would include:

1. Locate the process_new_hire procedure in the package body
2. Read through all the code line by line
3. Mentally extract and organize the key operations
4. Potentially follow additional function calls to understand the complete

work�ow

The RAG system accomplished this with a simple natural language query,
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delivering an organized summary and providing semantic meaning with it.
This addresses the challenge explained in Chapter 1, in which developers
like Sarah need to manually trace the code to understand its pieces. The
system not only identi�ed the technical steps but also recognized their
business purpose (e.g., "onboarding"), but also identi�ed architectural
patterns like modular design with separate packages for validation, error
handling, and employee management.

Schema Understanding Edge Case

Query: �What does table xy contain?�

System Response: The provided PL/SQL code de�nes two tables,
employee_documents and job_history, which are part of a database
schema likely related to employee management. Below is a detailed
explanation of each table's structure, functionality, and key details:

employee_documents Table
Purpose: Stores documents uploaded by or related to employees
(e.g., resumes, ID copies, contracts).
Structure:

� document_id: Primary key (unique identi�er for each document)
� employee_id: Foreign key referencing the employees table.
Ensures documents are linked to valid employees

� document_type: Describes the document's category (e.g., �Resume�,
�Passport Copy�). Cannot be null

. . . (additional �elds as needed)

job_history Table
Purpose: Records an employee's past job roles, departments, and
employment dates.

. . . (structure details as needed)

Analysis: This response demonstrates a limitation in the current
implementation. When asked about a non existent table ("xy"), the system
retrieved the closest matching content (information about
employee_documents and job_history tables) rather than correctly
identifying that the table doesn't exist.

This behavior reveals an important issue: the system currently lacks a
veri�cation mechanism to con�rm the existence of entities before providing
information about them. The RAG system retrieved semantically similar
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content based on vector similarity, but without a validation step to verify
that "table xy" actually exists in the codebase.

This highlights a key area for improvement: implementing entity
veri�cation to ensure the system can distinguish between requests for
existing versus non existent database objects. Without this capability, users
might receive seemingly authoritative information about non existent
components, potentially leading to confusion or errors in development work.

A more appropriate response would have been to inform the user that no
table named "xy" exists in the codebase and o�er information about
available tables instead.

Additionally when asked "What tables exist in this database" the system
only retreives the information of the �rst chunk it can �nd. the displayed
infos are correct but information is missing.

System Response: The database contains multiple interconnected tables
for employee management:

employees Table
Purpose: Stores core employee information and their current
job/department assignments.
Key Columns:

� employee_id (Primary Key): Unique identi�er for each employee
� first_name, last_name: Employee's name
� email (Unique, Not Null): Unique email address
� hire_date, salary, job_id, manager_id, department_id

departments Table
Purpose: Stores department information and their managers.
Key Columns:

� department_id (Primary Key): Unique identi�er for each
department

� department_name (Not Null): Name of the department
� manager_id: Links to the department's manager
� location_id: Links to a physical location

job_history Table
Purpose: Tracks an employee's past job roles and department
assignments.
Key Columns:

� Composite Primary Key: (employee_id, start_date)
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� end_date, job_id, department_id

Key Relationships:

� Self-referencing relationship in employees via manager_id

� employees linked to departments and jobs (referenced but not shown)
� job_history tracks historical employment records

The system only retrieved information from the �rst content chunk, missing
other tables referenced in the schema (like jobs and locations).

The response does correctly identify the table structures and their
relationships, showing understanding of database design concepts like
primary keys, foreign keys, and constraints. It also recognizes the business
purpose of each table within the employee management system.
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7. Conclusion

This report systematically researched how to e�ciently implement a RAG
system for PL/SQL code analysis while using resource e�cient components.
The proof of concept investigated whether current LLM technology can
handle PL/SQL code while operating under strict security and
computational constraints.

For this purpose, a RAG system was created which showed that the results
not only depend on the chosen LLM but heavily rely on the underlying
components. The research answered what the best approach is to embed
code and which model to choose. Through controlled experimentation with
embedding models, it was identi�ed that BGE-M3 signi�cantly outperforms
GraphCodeBERT for PL/SQL code retrieval tasks, achieving a 28%
improvement in category di�erentiation (contrast ratio 1.35 vs 1.06).

Afterwards, methods were discovered to preprocess the code to receive
better embedding results. To preserve logical code boundaries, semantic
chunking was implemented, and to discover issues in the code, the ZPA
parser was integrated. To search Qdrant, which is the chosen vector
database, a hybrid search approach was implemented, combining vector
similarity with metadata �ltering to provide optimal retrieval accuracy.

The implemented architecture successfully demonstrates that AI assisted
code analysis is able to operate within constrained computational
environments. The locally deployed approach using Qwen3-32B achieved
interactive responses in under 3 minutes while maintaining full data
sovereignty. Critical resource optimization strategies were identi�ed:
semantic chunking reduces vector storage requirements while preserving
code semantics, BGE-M3's 8192-token context window enables complete
procedure analysis without fragmentation, and Qdrant's �ltering
capabilities minimize computational overhead during retrieval operations.

Despite the successful retrieval of helpful and rich responses, there are still
limitations and issues in the current system. The LLM only takes the
selected chunks as context at the moment and retrieves the next best chunk
when looking for a non existing table.

By running the test queries with a success rate of over 60%, the �rst
acceptance criterion was achieved (SC-001). The project also generated
further insights in applying LLMs for legacy code comprehension, leading
to the ful�llment of SC-003. The only criterion not fully met yet is SC-002,
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because the current system hasn't been tested to an extent yet where clear
limitations regarding LLM technology processing PL/SQL code can be
de�nitively established. Therefore, the project hasn't fully achieved all
acceptance criteria as of June 1, 2025.

7.1 Future work

Therefore, the next steps planned for the project include research on how to
provide the LLM with more context while assessing the resource e�ciency
that comes with it. Also, there will be more extensive testing with larger
codebases and a more diverse set of information (code, documentation,
tickets) and harder testing of the LLM's limits. This will provide a clearer
outlook for future use of this system.

Key areas for development include implementing entity veri�cation
mechanisms to address the "table xy" limitation discovered during testing,
where the system provided information about non existent database objects.
Additionally, the similarity threshold of 0.6 requires optimization through
systematic testing to balance retrieval accuracy with response completeness.

The current semantic chunking approach, while preserving PL/SQL object
boundaries e�ectively, could be enhanced to maintain cross package
relationships that span multiple chunks. Integration of the ZPA parser's
code quality analysis into the response generation process would provide
developers with immediate insights about potential issues in retrieved code
segments.

Based on the results obtained, the system will be adapted and development
will continue with focus on these identi�ed improvement areas.
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A. System Query Responses

A.1 Schema Analysis Responses

A.1.1 Query: "What tables exist in this database"

Full System Response

The provided PL/SQL code de�nes three tables (`job_history`, `em-
ployees`, and `departments`) that form a relational database structure
for managing employee, department, and job history data. Below is a
breakdown of their functionality, relationships, and key details:

1. `employees` Table Purpose: Stores core employee information

and their current job/department assignments.
Key Columns:

� `employee_id` (Primary Key): Unique identi�er for each employee.
� `�rst_name`, `last_name`: Employee's name.
� `email` (Unique, Not Null): Unique email address for identi�cation.
� `hire_date` (Not Null): Date the employee was hired.
� `job_id` (Foreign Key � `jobs.job_id`): Links to the employee's
current job role.

� `salary` (Check Constraint: `salary > 0`): Ensures valid positive
salary.

� `manager_id` (Foreign Key � `employees.employee_id`): Self-
referencing relationship.

� `department_id` (Foreign Key � `departments.department_id`):
Links to department.

Key Functionality:

� Tracks employee details and their current job/department.
� Enforces data integrity via constraints (e.g., salary must be positive,
unique emails).

� Supports hierarchical management structures via `manager_id`.
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2. `departments` Table Purpose: Stores department information

and their managers.
Key Columns:

� `department_id` (Primary Key): Unique identi�er for each depart-
ment.

� `department_name` (Not Null): Name of the department.
� `manager_id` (Foreign Key � `employees.employee_id`): Links to
the manager.

� `location_id` (Foreign Key � `locations.location_id`): Links to a
location.

Key Functionality:

� Manages departmental structure and assigns managers.
� Connects departments to employees and locations.

3. `job_history` Table Purpose: Tracks an employee's past job

roles and department assignments.
Key Columns:

� `employee_id` (Foreign Key � `employees.employee_id`): Links to
the employee.

� `start_date`: Start date of the job/department assignment.
� `end_date` (Not Null): End date of the job/department assignment.
� `job_id` (Foreign Key � `jobs.job_id`): Links to the previous job
role.

� `department_id` (Foreign Key � `departments.department_id`):
Links to department.

Key Functionality:

� Maintains historical records of employee job/department changes.
� Uses a composite primary key (`employee_id`, `start_date`).
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Relationships and Constraints

1. Foreign Key Relationships:

� `employees.job_id` � `jobs.job_id` (not shown).
� `employees.department_id` � `departments.department_id`.
� `employees.manager_id` � `employees.employee_id` (self-
referencing).

� `job_history.employee_id` � `employees.employee_id`.
� `job_history.job_id` � `jobs.job_id` (not shown).
� `job_history.department_id` � `departments.department_id`.

2. Constraints:

� Primary Keys: Ensure uniqueness for records.
� Foreign Keys: Enforce referential integrity.
� Check Constraints: `salary > 0` ensures valid salary values.
� Unique Constraints: `email` must be unique for each employee.

Summary This schema is designed to manage employee data, depart-

mental structure, and job history with strong data integrity. Key fea-
tures include:

� Self-referencing hierarchical relationships (managers).
� Historical tracking via `job_history`.
� Constraints to ensure valid and consistent data.
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A.1.2 Query: "What does table xy contain?"

Full System Response

The provided PL/SQL code de�nes two tables, `employee_documents`
and `job_history`, which are part of a database schema likely related to
employee management. Below is a detailed explanation of each table's
structure, functionality, and key details:

1. `employee_documents` Table Purpose: Stores documents up-

loaded by or related to employees (e.g., resumes, ID copies, contracts).
Structure:

� `document_id`: Primary key (unique identi�er for each docu-
ment).

� `employee_id`: Foreign key referencing the `employees` table.
� `document_type`: Describes the document's category. Cannot be
null.

� `�lename`: Name of the uploaded �le (up to 100 characters).
� `�le_data`: Binary Large Object (BLOB) storing the actual �le
content.

� `upload_date`: Date when the document was uploaded.
� `notes`: Optional notes or metadata about the document.
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Key Functionality:

� Tracks employee-related documents directly in the database using
`BLOB` storage.

� Enforces referential integrity via the `employee_id` foreign key.
� Ensures every document has a type and is associated with a valid
employee.

2. `job_history` Table Purpose: Records an employee's past job

roles, departments, and employment dates.
Structure:

� `employee_id`: Foreign key referencing the `employees` table.
� `start_date`: Start date of the job role.
� `end_date`: End date of the job role (cannot be null).
� `job_id`: Foreign key referencing the `jobs` table.
� `department_id`: Foreign key referencing the `departments` table.
� Primary Key: Composite key of `employee_id` and `start_date`.

Key Functionality:

� Tracks career progression by recording past jobs, departments, and
employment durations.

� Enforces referential integrity via foreign keys.
� Prevents duplicate entries using the composite primary key.

Summary

� `employee_documents`manages employee-related �les with meta-
data and binary storage.

� `job_history` tracks an employee's past roles, departments, and
employment dates.

These tables are critical for maintaining a comprehensive HR database,
supporting document management and career history tracking.
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A.2 Process Flow Analysis Responses

A.2.1 Query: "What happens when a new hire is processed"

Full System Response

The provided PL/SQL code de�nes procedures and packages for pro-
cessing new employee hires and managing employee data. Here's a
breakdown of its key functionality and important details:

1. `process_new_hire` Procedure Purpose: Handles the on-

boarding of new employees with validation and error handling.
Key Steps:

� Input Parameters: Accepts employee details like name, email,
phone, job ID, department ID, salary, and optional manager ID.

� Validation Checks:

� Job ID: Validates against `validation_pkg.is_valid_job`.
� Department ID: Validates using `valida-
tion_pkg.is_valid_department`.

� Phone/Email: Likely includes additional validations.

� Error Handling: Uses a centralized `error_pkg` to log errors.
� Employee Creation: After validation, calls `em-
ployee_pkg.create_employee`.
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2. `employee_pkg` Package Purpose: Centralized logic for em-

ployee management.
Key Components:

� `get_next_employee_id` Function: Generates the next avail-
able employee ID.

� `create_employee` Procedure:

� Inserts a new employee record into the database.
� Parameters include personal details, job, salary, department.
� Returns the newly assigned `employee_id` via an `OUT` parame-
ter.

� `update_employee` Procedure: Updates existing employee
records.

3. Validation and Error Handling

� Validation Layer: Uses a `validation_pkg` package to enforce busi-
ness rules.

� Error Handling: Custom errors are raised with contextual mes-
sages.

4. Key Work�ow for New Hires

1. Input Validation: Job, department, and other �elds are validated.
2. Employee Creation: If valid, `employee_pkg.create_employee` is

called.
3. Output: Success/failure messages are logged.

Example Scenario When a new hire is processed:

1. The `process_new_hire` procedure is invoked with employee details.
2. Validations check if the job ID and department ID are valid.
3. If valid, `employee_pkg.create_employee` inserts the employee into

the database.
4. If invalid, an error is logged, and processing stops.

This ensures data integrity and consistent onboarding work�ows.
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A.3 Test Queries

This appendix contains the test queries used to evaluate the system,
organized by category.

1 test_queries = {

2 "schema_analysis": [

3 "What does the employees table contain",

4 "Show me the departments table structure",

5 "What are the foreign keys in the job_history table",

6 "What tables exist in this database",

7 "What is the primary key of the employees table"

8 ],

9

10 "business_logic": [

11 "How is a new hire processed",

12 "What happens in process_new_hire",

13 "What validation is performed before creating

employees",

14 "How are salary reviews conducted",

15 "What is the employee transfer process"

16 ],

17

18 "dependency_analysis": [

19 "What packages are used in employee processing",

20 "Which procedures depend on validation_pkg",

21 "What tables are referenced by the employees table",

22 "Show me all dependencies of the process_new_hire

procedure",

23 "What error handling is used in the system"

24 ],

25

26 "code_generation": [

27 "How should a new procedure look like for adding a

new department",

28 "Create a procedure for updating employee salaries",

29 "Show me how to implement a new validation function",

30 "Generate a trigger for audit logging"

31 ],

32

33 "complex_reasoning": [

34 "What is the complete workflow for hiring a new

employee",

35 "How are employees and departments related",

36 "What happens when an employee changes departments",

37 "Explain the audit trail system"

38 ],

39

40 "edge_cases": [
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41 "Show me the xyz table", # Non -existent table

42 "What does the invalid_procedure do", # Non -existent

procedure

43 "How to delete all employees", # Potentially

dangerous query

44 "What is the password validation logic" # Security -

related

45 ]

46 }

Listing A.1: Test queries organized by category
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