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Abstract

Typosquatting has been among the most common attacks on software supply chain systems
in recent years. These attacks involve malicious packages that mimic legitimate packages.
The attackers register these malicious packages under a name resembling the legitimate
ones while containing a typo or other types of misspelling. As a result, developers making
one such mistake during the installation process download the malicious library instead
of the legitimate one.
This work compares and contrasts different package managers regarding their vulner-

ability and the derivation of possible approaches to reduce and prevent future attacks.
For this purpose, the package managers npm, Maven, PyPI, Go, Packagist, NuGet,
RubyGems, and Crates were compared for specific characteristics, and their attack fre-
quency was brought into relation. Subsequently, the effect of the different package man-
ager properties on the attack frequency has been investigated. Another core investigation
of this work is the effectiveness in the detection of positive typosquatting candidates using
various string-matching algorithms. These were evaluated with respect to the identifica-
tion of typosquatting candidates and then compared with each other in terms of accuracy
and runtime. Additionally, a new string-matching algorithm, a modified variant of the
Damerau-Levenshtein distance, has been proposed and examined. This algorithm exhib-
ited a significantly greater true positive rate than the other string-matching approaches. In
order to verify whether the typosquatting candidates are genuine typosquatting packages,
machine learning techniques were incorporated to classify packages either into malicious
or benign classes. The result is a 98% accuracy on the datasets collected for this thesis
and an 88% accuracy on the evalutation of an external dataset.

Keywords— package manager, typosquatting, npm, security, approximate pattern
matching, levenshtein, damerau-levenshtein, jaro-winkler, gestalt-pattern, machine learn-
ing, malicious code, decision tree, random forest
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Typosquatting Attacks and Mitigations

1. Introduction

The importance of security in IT has become particularly clear in recent years. One of the
most prominent offenders is the ransomware WannaCry, which was able to infiltrate over
300,000 computers in over 150 countries in May 2017 [1], [2]. Shortly after, in July 2017,
the Equifax group experienced a data breach due to an unpatched vulnerability. This
breach resulted in the data of around 50% of US citizens being stolen. The stolen data
ranged from general personal data to credit card information and social security numbers
[3]. Remarkably during the height of the COVID-19 pandemic, the number of reported
crimes to the Internet Crime Complaint Center (IC3) increased by approximately 400% [4].
In December 2021, the vulnerability Log4Shell was discovered. The vulnerability allowed
malicious actors to execute arbitrary code on the host system. Wiz and EY (Ernest &
Young) found that 93% of the analyzed cloud environments were vulnerable to Log4Shell
[5].

In particular, attacks on software supply chains (SSC) rapidly increased during this
period [6]. SSC refers to components and processes involved in creating, modifying, and
distributing software products [7]. According to Sonatype, an average annual increase
of 742% was recorded in the last three years [8]. A highlighting of this statistic can be
found in Figure 1. While the number of malicious packages detected by Sonatype was
approximately 12,000 in 2021, this quickly rose to 88,000 in 2022. The most commonly
used attack types on SSC were Dependency Confusion and Typosquatting Packages [6].
The difference between this type of attack and the Equifax data breach, as well as the
Log4Shell incident is that perpetrators are now actively trying to introduce vulnerabilities
into a system instead of passively waiting for one to present itself.

Figure 1: Detection of Software Supply Chain Attacks from 2019 to 2022 [8]

Open source experienced a rapid rise in popularity. For instance, GitHub is home to
over 360 million repositories created by over 100 million users [9]. A study conducted by
Synopsis also estimates that 97% of the code bases contain open source software (OSS) [10].
While OSS offers many advantages, such as speed and cost efficiency during development,
it also offers new attack vectors to be exploited. In order to distribute and manage these
OSS, package managers are used. Package managers are critical SSC components in the
software development process, helping developers and users find and manage the packages
they need to build and run their applications. Some popular package managers include
npm for JavaScript, PyPI/pip for Python, and Maven for Java. However, due to their
popularity and widespread use, package managers are also attractive targets for attacks.
Malicious actors may exploit the users’ trust in these systems for their own personal gain.

2



Typosquatting Attacks and Mitigations

As mentioned, these attacks often take the form of dependency confusion or typosquatting
packages.
The main focus of this thesis will therefore be typosquatting attacks. In the context of

package managers, typosquatting attacks involve creating malicious packages designed to
be confused with legitimate packages by using similar or misspelled names. These attacks
trick users into downloading and installing malicious packages, for instance, npm install
react vs. npm install raect. The targets of these attacks are often developers, unlike
usual cyber attacks, which most frequently target the end-user.

1.1. Contribution and Goals

This thesis aims to derive and develop mitigations for typosquatting attacks on applica-
tion package managers by comparing different package managers, evaluating the number
of attacks on those package managers, and investigating the effect of various package man-
ager properties on their appeal as a primary target for typosquatting attacks. Aside from
analyzing the package managers and detecting mitigating strategies through package man-
ager properties, alternative methodologies for detecting and identifying such typosquatting
packages will be implemented and examined based on current literature. A quantitative
analysis of real-world typosquatting packages targeting the npm ecosystem was conducted
for this purpose in order to identify common patterns and properties that will aid in the
identification of such campaigns. The data and typosquatting packages used, analyzed,
and collected for this thesis are stored in a private GitHub repository1. Access will be
granted upon request.
The objective of this work thus consists of finding an answer to the following questions:
• Are there differences in the frequency of attacks depending on package managers?
• If so, why are there differences in the frequency of attacks depending on package

managers?
• Can general practices and procedures be derived from less vulnerable package man-

agers to mitigate typosquatting attacks?
• Can typosquatting attacks or packages be detected or mitigated at the package

manager level?

1.2. Outline

This thesis is structured into six chapters, with the chapter Introduction being the first
one, introducing the reader into the topic of typosquatting attacks, the contributions
of this thesis and the outline. The second chapter, Fundamentals introduces some of
this thesis’s necessary definitions and fundamentals. In particular, definitions for com-
ponents or terms from the area of the SSC are covered here, as well as some principles
in machine learning and approximate string matching. The third chapter, Typosquatting
Attacks follows, in which the procedures of typosquatting attacks are explained and the
term typosquatting itself is further differentiated. Subsequently, historical examples are
presented. The fourth chapter, Current State of the Art and Related Literatures, deals
with the research literature in the area of typosquatting attacks on package managers and
literatures in the area of approximate string matching. Chapter five, Methodology deals
with data acquisition and cleansing required for the chapter Mitigation and Detection of
Typosquatting Packages.

The central part of this thesis is chapter six, Mitigation and Detection of Typosquatting
Packages, covering, in general, the methodology, analysis, and implementation of the mit-
igation and detection strategies of typosquatting packages. This chapter is divided into
three subchapters. The first subchapter, Comparison of Package Managers, deals with
the comparison of different package managers and examines the correlation of the attack
frequency with package manager specific properties. Based on these, possible mitigation

1https://github.com/xMinhx/Typosquatting-Attacks-and-Mitigations
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measures are derived. The subchapter Effectivity of String Metrics for Typosquatting
Packages statistically examines the effectivity of typosquatting packages based on their
package names and identifies characteristics of particularly effective attacks. In addi-
tion, this subchapter compares various string-matching algorithms with one another for
their accuracy and runtime performance in identifying typosquatting candidates. Sub-
chapter Detection of Malicious Packages presents a method for detecting malicious intent
among typosquatting candidates and thus distinguishes typosquatting candidates from
typosquatting packages. For this purpose, the presented method uses procedures from the
field of machine learning. The last chapter, Conclusion and Future Work summarizes the
knowledge acquired from this thesis and suggests approaches for further research.

4
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2. Fundamentals

For the understanding of this work, terms from the area of software development are
required. These are explained in the following sections in more detail.

2.1. Package / Library

Packages often referred to as libraries, are reusable specific types of software components
that are pre-written mainly by other programmers but outwardly offer an interface [11].
Developers can then use this interface to integrate the functionality of a specific software
component into their own software component.

2.2. Dependency

A package is a dependency if it is required by another software component to function
properly [11]. A distinction is made between two types of dependencies, direct and transi-
tive dependencies [12]. A direct dependency between a software component and a package
exists if the latter is integrated directly and explicitly by the developer of the primary soft-
ware component. A transitive dependency between a software component and a library or
package exists if the latter is indirectly included in the software component through other
packages. The direct dependencies of a package integrated into a software component are
thus transitive dependencies of the software component. The distinction between direct
and transitive dependencies is further illustrated in the following figure:

Figure 2: Simplified dependency tree of the axios package

5
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2.3. Package Repository

Package repositories are components of SSC. A package repository is a collection of pack-
ages on a remote server from which the respective packages can be downloaded. Often
such repositories offer a search function as well as handle the management of metadata.
Examples of metadata include the number of downloads, the author of the package, ver-
sioning, release date, or dependencies. Usually, such package repositories are tailored to
a specific programming language or operating system [13].

2.4. Package Manager

Package managers are components of SSC as well. These software tools have the pur-
pose of assisting developers in downloading and managing their packages [13]. That is
especially necessary to manage all the dependencies automatically so developers do not
have to download and organize them manually. For example, to download a specific pack-
age with all its dependencies with the package manager npm, one can use the command
npm install <package>. Package manager and package repository are often used in-
terchangeably due to their close relationship and interaction. In the following, the term
package manager in this thesis refers to both components, the package manager and the
package repository. If only the package repository component is meant, this term is also
used as such. If only the component package manager is meant, then this is additionally
emphasized.

2.5. Approximate String Matching

Approximate string matching is a method that aims to match identical or similar strings
[14]. The similarity of two or more strings can be defined by certain algorithms or met-
rics. Depending on the algorithm or metric, the similarity of two strings can be specified
either in operation steps (i.e., how many operations are required to convert one string
into the other) or by assigning a value between 0 and 1, where 0 often means no similar-
ities and 1 indicates that both strings are identical [15], [16]. Four of the five approxi-
mate string-matching algorithms considered in this thesis are introduced in the following
subsections. Even though, strictly speaking, not all of the string-matching methods pre-
sented here are metrics, the term metric is still used for all of them for simplicity.

2.5.1. Levenshtein

Vladimir Levenshtein first introduced the Levenshtein distance in 1966 [16]. The Leven-
shtein distance specifies the similarity of two strings as the number of operations necessary
to transform one string into the other [14]. Allowed operations are insertions, deletions,
and substitutions. For instance, given a string ”care” and ”car” the Levenshtein distance
would be one. By removing or inserting the letter ”e”, one can transform ”care” into ”car”
in one operation step and vice versa. The algorithm for the Levenshtein distance can be
described by the following recursion [17]:

𝑑𝑎,𝑏(𝑖, 𝑗) = min

⎧⎪
⎪
⎨
⎪
⎪⎩

0 if 𝑖 = 𝑗 = 0,
𝑑𝑎,𝑏(𝑖 − 1, 𝑗) + 1 if 𝑖 > 0,
𝑑𝑎,𝑏(𝑖, 𝑗 − 1) + 1 if 𝑗 > 0,
𝑑𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗 ) if 𝑖, 𝑗 > 0,

(1)

The Levenshtein distance is usually implemented using a 𝑛 × 𝑚-matrix where 𝑛 and 𝑚
denote the length of the string 𝑎 and 𝑏. Therefore, 𝑖 and 𝑗 are the rows and columns of the
matrix. The values are calculated by iterating over every row and column while applying
the above equation. Figure 3 shows an example of such a matrix.

6



Typosquatting Attacks and Mitigations

Figure 3: Levenshtein - Matrix example [18]

2.5.2. Damerau-Levenshtein

Similarly to the Levenshtein distance, the Damerau-Levenshtein introduced by Fred Dam-
erau in 1964 is also an edit distance metric with the difference to the Levenshtein that
transpositions are also considered as a permitted operation step [19]. The equivalence of
transposition in the Levenshtein distance would consist of two operation steps, a deletion
and an insertion. In contrast, the transposition in the Damerau-Levenshstein distance is
considered one step. A visual demonstration is shown in Figure 4 and 5

Figure 4: Damerau-Levenshtein example of a transposition

Figure 5: Equivalence of transposition in Levenshtein distance

Thus the following equation resembles the Levenshtein recursion with the addition of
included transposition [17]:

𝑑𝑎,𝑏(𝑖, 𝑗) = min

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0 if 𝑖 = 𝑗 = 0,
𝑑𝑎,𝑏(𝑖 − 1, 𝑗) + 1 if 𝑖 > 0,
𝑑𝑎,𝑏(𝑖, 𝑗 − 1) + 1 if 𝑗 > 0,
𝑑𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗 ) if 𝑖, 𝑗 > 0,
𝑑𝑎,𝑏(𝑖 − 2, 𝑗 − 2) + 1 if 𝑖, 𝑗 > 1 and 𝑎𝑖 = 𝑏𝑗−1 and 𝑎𝑖−1 = 𝑏𝑗 ,

(2)
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2.5.3. Jaro-Winkler

Matthew Jaro introduced another string similarity metric called the Jaro similarity in
1989 [15]. Unlike the previously mentioned string similarity metrics (Levenshtein and
Damerau-Levenshtein), the values of this metric are restricted to values between 0 and 1.
If two strings are considered identical, then their similarity is indicated by the value 1. If
no similarity between two strings exists, then this is indicated by 0. As the two strings
become more similar, the function value approaches 1. The Jaro distance can be described
using the following equation [20]:

𝑠𝑖𝑚𝑗 =
{

0 if 𝑚 = 0
1
3 (

𝑚
|𝑠1| + 𝑚

|𝑠2| + 𝑚−𝑡
𝑚 ) else, (3)

Where |𝑠𝑖| is the length of the string 𝑠𝑖. 𝑡 denotes the number of characters not in the
correct order divided by 2. Furthermore, 𝑚 is the number of matching characters in both
strings. A character matches if at least one of the following conditions is true:

1. The same character has the same index in both strings
2. The same character is no further away than 𝑘 positions from each other

With 𝑘 = ⌊max(|𝑠1|,|𝑠2|)
2 ⌋ − 1.

In 1990, William Winkler presented a modified version of the Jaro similarity, the Jaro-
Winkler similarity [21]. This version has the additional property that identical prefixes up
to a length of 𝑙 provide a positive weighting of 𝑝 to the similarity score. The background
of this is that the assumption exists that people would make fewer typing errors at the
beginning of a word than at the end or in the middle of a word. Thus the modified variant
has the following form [20]:

𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝑙𝑝(1 − 𝑠𝑖𝑚𝑗) where 0 <= 𝑝 <= 0.25 (4)

2.5.4. Gestalt Pattern Matching

The Gestalt Pattern Matching algorithm, an algorithm developed in 1983 by John Ratcliff
and John Obershelp is best explained with the following quote: ”[...] people can recognize
a pattern as a functional unit [...] by summation of its parts. [...] a person can recognize
a picture in a connect-the-dots puzzle before finishing or even beginning it. This process
[...] is called gestalt.” [22]. This is precisely the principle on which this algorithm works.
It tries to imitate the human intuition of word recognition. This is done via the following
formula [20]:

𝐷𝑟𝑜 = 2𝐾𝑚
|𝑆1| + |𝑆2| (5)

𝐾𝑚 is the number of matching characters, while |𝑆𝑖| is the length of the string 𝑆𝑖. The
number of matching characters is defined by finding the largest common substring. This
process is then repeated recursively for the substrings to the left and right of the largest
common substring. Each character of a common substring that is detected during this
process is defined as a matching character.
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2.6. Fundamentals of Machine Learning

This section introduces the machine learning fundamentals needed for the approaches and
concepts used in this thesis.

2.6.1. Classification and Regression Trees

Classification and Regression Trees (CART), also known as Decision Trees, first discussed
and suggested by Leo Breiman, are supervised learning methods used to perform classifi-
cations and regressions [23]. CARTs often use a binary tree as a data structure, displayed
in Figure 6; this means that every node 𝓃 except the root 𝓇 has exactly one incoming and
two outgoing edges. A decision is made in each node 𝓃 of the tree, which is determined
by a split criterion. It is examined here whether the incoming value conforms or disagrees
with the split criterion in the node. The edges are then chosen by the decision made in the
respective node. The first decision is made in the root 𝓇. The classifications or regressions
are then found in the leaves 𝓁 of the tree. Figure 7 shows an example of a Decision Tree
by Segaran [24].

Figure 6: Binary tree example

Figure 7: Decision tree example [24]
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In order to determine the corresponding split criterion for each node, the datasets are
systematically separated into two subsets according to their different attributes and for
each domain of that respective attribute. One dataset contains all instances of that specific
domain, while the other does not. Subsequently, the information gain is calculated [24].
The information gain is a measure for amount of information gained following a split. The
Decision Tree works with the greedy approach and tries to perform splits based on the
highest information gain. A metric for impurities is used to calculate the information gain,
which is explained in more detail in the following section.

2.6.2. Measures of Impurity and Information Gain

As mentioned, it must be determined according to which criteria the nodes are dividing
the respective datasets. In order to determine the splitting criteria, the information gain
is used. The information gain describes how much the uncertainty changes after a split,
with the size of the sets also factored into the weighting [25]. This can be best explained
with the help of a visual example presented in Figure 8, given a set 𝑀 . In this set 𝑀 , the
elements have one class color and two attributes, shape and kernel color. There are two
class domains blue and red. The domains of the shape attribute are square and circle, and
for the attribute, kernel color, the domains are yellow and purple. The goal is to determine
the class of an element by the attribute shape and kernel color with high certainty. 50%
of the elements are squares, and the remaining 50% are circles. If one randomly picks an
element from this set 𝑀 , it is unknown whether it will be blue or red. The uncertainty, in
this case, is maximized. Nevertheless, if the set is split by, for instance, shape, such that
all squares are placed into one set 𝐴 and all circles into the other set 𝐵, one would pick
up an element from the first set by chance. The certainty of the element being red would
be maximized. Thus the information gain is also maximized, and the given split criterion
minimizes uncertainty. A split by kernel color would also increase the information gain
and reduce the uncertainty, but not to the same extent as a split by shape would do.

Figure 8: Split by shape vs. split by kernel color

In the literature, the two impurity metrics, Entropy and Gini coefficient, are frequently
encountered to calculate the information gain. Entropy describes the disorder in a dataset
and can be calculated by the following equation [26]:

𝐸(𝐷) = −
𝑘

∑
𝑖=1

𝑝𝑖 ⋅ 𝑙𝑜𝑔2(𝑝𝑖) (6)
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The Entropy of a set 𝐷 is therefore defined by the negative sum of 𝑖 over 𝑘 where 𝑘 is the
number of classes (in our example Figure 8 this would be 2, red and blue). 𝑝𝑖 denotes the
ratio between the class 𝑖 and the number of data in the whole dataset.
The value range of this metric is between 0 and 1. The higher the value, the higher the
impurity [24]; the maximum impurity is reached with a value of 1. The Gini coefficient,
on the other hand, describes the probability of a miss classification of an entity after being
randomly chosen and is described with the following equation [27]:

𝐺(𝐷) = 1 −
𝑘

∑
𝑖=1

𝑝2
𝑖 (7)

The notion for 𝑝𝑖 and 𝑘 is the same as the one mentioned in the Entropy metric.
To determine the information gain, one has to calculate the difference between the

impurity of the dataset before the split and the average of the impurity of all child sets
after the split. The equation for such a calculation is demonstrated below [24]:

𝐼(𝑋, 𝑌 ) = 𝐼𝑚(𝑋) −
𝑑

∑
𝑖=1

𝑐(𝑌𝑖)
𝑐(𝑌 ) ⋅ 𝐼𝑚(𝑌𝑖) (8)

Thus the information gain is calculated by the parent set 𝑋, and the child sets 𝑌 where
𝑑 denotes the number of children, 𝑐(𝑌𝑖) the cardinality of a specific child set 𝑌𝑖. And 𝑐(𝑌 )
the cardinality of all child sets. 𝐼𝑚(𝑋) is the impurity of the parent set 𝑋 and 𝐼𝑚(𝑌𝑖) is
the impurity of the child set 𝑌𝑖. The function 𝐼𝑚 can either be the Entropy or the Gini
coefficient.

2.6.3. Random Forest

Random Forest is an ensemble machine-learning method that uses Decision Trees for
classification or regression problems. In a Random Forest, several randomized Decision
Trees are created during the training phase, whereby a random set is formed from the
data population for each tree. These sets are then used as input for the respective trees.
Bootstrapping is one of the more popular methods to generate samples to train these
Decision Trees [28]. The classifications of the various trees are collected and evaluated to
a common conclusion further visualized in Figure 9 [29]. The advantage of Random Forests
over Decision Trees is that they are often more robust and less susceptible to overfitting
[28].

Figure 9: Random forest simplified example
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2.6.4. Bootstrapping and Out-of-Bag

Bootstrapping is a method used to create multiple training datasets for Random Forest
models. This can be achieved by taking randomized samples from the total dataset and
selecting data randomly, which may result in the same data being chosen multiple times
[30]. On statistical average, 63.2% of the data from the total population is used for a
training dataset [29]. The remaining 36.8% of the data for each tree is referred to as
the out-of-bag set, which is used as a validation set to estimate the model’s performance
during the training phase. This process is also known as out-of-bag estimation. Therefore,
in bootstrapping, the out-of-bag samples are used during the training phase to estimate
the model’s performance. In contrast, the testing phase involves evaluating the model’s
performance on a separate, previously unseen test set [28].

2.6.5. Classification Report

The prediction of a binary classification model can be described as either a true positive,
true negative, false positive, or false negative prediction [31]. A prediction is true positive
if the model correctly predicted the existence of a property in an object and true negative
if the model correctly predicted the absence of a property in an object. In contrast, a false
positive in binary classification happens when the model wrongly predicts the presence of a
property in an object when it is not there. A false negative arises when the model wrongly
predicts the absence of a property in an object while it is present. A visual demonstration
is shown in Figure 10.

Figure 10: Confusion Matrix [31]

A classification report summarizes a machine learning model’s performance in a clas-
sification problem. A classification problem involves the prediction of classes based on
incoming data. Metrics such as Precision, Recall, F1-score, and Support are often in-
cluded in the report and typically provide information on the model’s ability to properly
identify positive and negative samples for each class, as well as the model’s overall accu-
racy [32]. Table 1 gives an example of a classification report. In this table, the model had
to predict whether an object is of class A or of class B.

Precision Recall F1-Score Support

A 0.7 0.5 0.58 13

B 0.8 0.6 0.67 21

Accuracy 0.75 34

Weighted
Avg. 0.76 0.59 0.63 34

Table 1: Classification report for Random Forest
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Precision describes the ratio between true positive predictions for a given class and a
class’s total number of positive predictions [31]. Using the example provided above in
class A, this means that 70% of all objects classified as A were true instances of class
A. The recall is the ratio between true positive predictions and the total number of true
instances of the class in the dataset [31]. Therefore, the recall value of 0.6 in class B
describes that of the true instances of Bs in the dataset; 60% could be correctly identified
as types of class B. The remaining 40% were not classified as instances of class B. The
F1-score describes the harmonic mean between the precision and the recall. It is used
to evaluate the overall performance of a model by giving both recall and precision the
same weight [31]. However, a high F1 score can only be achieved if both performance
metrics are high. If one metric is significantly lower than the other, then the weighting is
stronger for the lower value [32]. For instance, given a precision of 0.2 and a recall value
of 1.0, the resulting F1-score is, therefore, 0.33. The accuracy is the ratio between the
number of correctly classified objects and the number of all objects [31]. For instance, an
accuracy of 75% means that 75% of all objects were correctly classified into A and B. The
Support denotes the number of true instances for each class. The Weighted Avg. describes
the average for each category (Precision, Recall, F1-Score), weighted by the number of
instances (Support). The equation for precision, recall, F1-score, and accuracy is given
below [31].

Precision = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃

Recall = 𝑇 𝑃
𝑃

F1-score = 2
1

Precision + 1
Recall

= 2 ⋅ Precision ⋅ Recall
Precision + Recall

Accuracy = 𝑇 𝑃 + 𝑇 𝑁
𝑃 + 𝑁

(9)

TP denotes true positive predictions, FP false positive predictions, and TN true negative.
P is the total number of positives, and N is the total number of negatives. Therefore P +
N is the total population in a dataset.

13



Typosquatting Attacks and Mitigations

3. Typosquatting Attacks

3.1. Introduction

Typosquatting is assigned to the area of social engineering [33]. Moreover, it originally
stems from DNS (Domain Name System), where end-users are tricked into visiting websites
they did not intend to visit in the first place. For this purpose, web addresses are registered
that imitate real web addresses, except that these imitations also contain typing and
spelling errors since the original web address is already occupied. An example is google.com
and googl.com. Most Typosquatting domains in the DNS space are used for financial gain
[34]; in contrast, attacks on package managers are mostly used to inject malicious code
[35].
This thesis explores the notion of typosquatting in the context of SSCs. For software

development in today’s time, external libraries are often used for software products. These
external libraries may already use external libraries themselves so that a whole tree of
dependencies can develop, which is demonstrated in Figure 11. To use the library vue,
for example, altogether, 20 other libraries must be installed, whereby only 5 of these 20
libraries have a direct dependence on vue. The remaining 15 are introduced into the
library through transitive relations. Package managers are used to simplify and automate
the administration of such packages and their dependencies.

Figure 11: A dependency tree of the library vue 2

As mentioned in the introduction, typosquatting attacks on package manager use soft-
ware packages that imitate legitimate packages. This starts by selecting prevalent pack-
ages, then creating new packages that use a modified form of the popular package’s name.
Malicious code can then be inserted into this imitation. The malicious actor then may reg-
ister the imitation via the package manager or directly on the package repository through
the web. After registering the package, all developers who made the appropriate typo
during installation now become victims. For instance, if an attacker wanted to imitate

2https://npmgraph.js.org/?q=vue (last visited: 12.01.2023)
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the vue library of the npm ecosystem, all they would have to do is register new packages
with the name vu or veu. Anyone typing npm install vu or npm install veu would then fall
victim to this attack. Depending on the implementation type, the functionalities of the
original library can also be imitated. This is achieved by either copying the source code,
since this is accessible to everyone, or by specifying the original library as a dependency
in the metadata (e.g. in the package.json for npm). This leads to a situation in which the
victims only realize late or not at all that they have been targeted. A simplified interaction
between victim and perpetrator is displayed in Figure 12.

Figure 12: Simplified interaction between victim and actor

3.2. Differentiation of Typosquatting Types

There are different ways to categorize and define typosquatting types. For example,
Tschacher’s work divides them into three categories: Creative Typo-names, Stdlib Typos,
and Algorithmically Determined Typo-names [13]. In the work of Meyers and Tozer, on
the other hand, they are divided into two categories: Misspellings and Confusion Attacks
[36]. The paper [37], in turn, distinguishes between Combosquatting and Typosquatting.
In Tschacher’s thesis, for example, Combosquatting would be a subset of the Creative
Typo-names. There is no fixed definition for typosquatting attacks in the context of
package managers. However, the consensus is that a package is a typosquatting package
exactly when it imitates other packages on the metadata level and, in some instances, also
at the functionality level.
Due to the various definitions, in the following, a thesis-specific definition of typosquat-

ting will be introduced. Typosquatting packages are a subset of malicious packages, with
the particular characteristic that they choose the imitation of legitimate packages as their
propagation method. A package imitates another exactly when it is evident from the name
or metadata of the package that there is a similarity between itself and another package.
Not every package that resembles another package in name has malicious intent. It could
be that the similarity is only coincidental. Therefore, an additional distinction must be
made between typosquatting packages, i.e., packages that use the mentioned propagation
method and have malicious intent, and typosquatting candidates, i.e., packages that have
a similar name to other packages but do not have malicious intent.
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In the paper [35], a quantitative analysis was performed on 174 malicious packages, and
a set of primary goals of the malicious packages emerged iteratively from the analysis.
These are:

• Opening Backdoors
• Exfiltration of data
• Placing a Dropper (placement of malware, which downloads further malware)
• Cause of Denial of Service
• Financial Gain through theft

In their quantitative analysis, malicious packages were also assigned to hybrid primary
target sets, such as ”Data Exfiltration & Backdoor”. However, the existence of only one
property is sufficient to classify such packages as malicious, which is why a package only
needs to have at least one of these primary goals to have malicious intent attributed to it.
Therefore a package has malicious intent exactly when at least one of the primary goals
can be observed.

The mimicking of package names is classified into two main categories, typographical
errors and confusion. Anything not assigned to the set typographical errors is assigned
to the set confusion. A package name is assigned to the typographical errors set if it is
intuitively clear that it is a typo or a clear similarity is evident. Usually but not exclusively
indicated by the following pattern:

• Insertion (of neighboring keys): angular ⟶ anguilar
• Deletion of characters: angular ⟶ angula
• Transposition: angular ⟶ angulra

If new semantics were added to the name, it would be assigned to the confusion cat-
egory (the equivalence of the term combosquatting in the literature [37]). The reason
for this categorization is that confusion is a gray area, where it is difficult to know by
the package name with certainty whether the package is an imitation or whether it is a
malicious package in general. Thus this thesis focuses on typosquatting attacks in the
category of typographical errors. In the following, the term typosquatting packages refers
to typosquatting packages leveraging typographical errors. Table 2 lists a few examples
of typosquatting packages and their targets, as well as a categorization.

Imitation Original Category

5eact react Typographical error

crossenv cross-env Typographical error

fetch-node node-fetch Confusion

follow-rdeirects follow-redirects Typographical error

vue-style-gloder vue-style-loader Typographical error

twilio-npm twilio Confusion

colors-update colors Confusion

Table 2: Example of a categorization
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3.3. Historical Typosquatting Attacks

3.3.1. Extraction of AWS Keys

In June 2022, Sonatype discovered several malicious packages [38]. The packages are
loglib-modules, pyg-modules, pygrata, pygrata-utils, and hkg-sol-utils. For the former two,
the targets are known, which were loglib and pyg. For the last three, the package to be
imitated has yet to be discovered. The purpose of the malicious packages was to exfiltrate
network information as well as environment variables, including AWS credentials, and
send them to a remote host. The source code for this is displayed in Figure 13. The
collected information on that host was publicly available. As a result, hundreds of text
files containing sensitive information became publicly available. Figure 14 displays an
excerpt of the sensitive data.

Figure 13: Malicious code present in loglib-modules [38]

Figure 14: Sensitive information uploaded by the malicious packages [38]
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3.3.2. Stealing of SSH and GPG keys using two Typosquatting Packages

This attack was performed using the two typosquatting packages python3-dateutil and
jeIlyfish (note that the first letter l in jeIlyfish is a capital i), both mimicked the dateutil
and jellyfish packages. It is unlikely to mistype jellyfish to the point of swapping the letters
l and i, which will be more clear in the following explanation. The attack was planned
for almost a year. In this, the attacker first uploaded the imitation jeIlyfish on December
11, 2018; this package contained the malicious code to exfiltrate SSH and GPG keys of
a user, examine some folder structures, and send them to an IP address [39]. For this,
the obfuscated source code displayed in Figure 15 was used. This package remained unde-
tected. After almost a year, the attacker registered a new package called python3-dateutil,
which contained no malicious code. However, the package depended on the jellyfish imita-
tion, which contains the malicious payload and is automatically installed by the package
manager. Thus, the attacker used the python3-dateutil library as a Trojan horse for the
introduction of the real malicious package jeIlyfish. Hence, a typo of the library jellyfish
was not necessary to download the jellyfish imitation on a machine. Visually, it is also
challenging to tell the difference between jeIlyfish and jellyfish.

Figure 15: Malicious code present in jeIlyfish [40]
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4. Current State of the Art and Related Literatures

This chapter summarizes recent literature on typosquatting and malicious package detec-
tion. Furthermore, it provides an outlook on related fields in the detection of typosquatting
packages, e.g., approximate string matching.

4.1. Effectivity of Typosquatting Packages

The topic of security in package managers is more relevant than ever, with the two most
significant attack vectors in 2021 on such systems being typosquatting and dependency
confusion, which have been steadily increasing since 2022 [6], [8]. Researchers are also
actively investigating different approaches in detecting such malicious packages in these
ecosystems, e.g., the paper titled Practical automated detection of malicious npm packages
was recently published in 2022, indicating an actively researched topic [41].
One of the first pieces of literature about typosquatting attacks on package managers

was done by Nikolai Tschacher and published in 2016 [13]. In his work, Tschacher demon-
strated the effectiveness of attacks on package managers using typosquatting packages he
created himself. He was thus able to infiltrate over 17000 host systems and had access
to administrative privileges on 43.6% of these systems. Tschacher classified typosquat-
ting attacks into three categories and provided the following examples: Creative typo
names (e.g., coffe-script instead of coffee-script, since coffe-script is more effective than
cofee-script), Stdlib (e.g., urllib2) and algorithmically determined typo names (req7est in-
stead of request). The author also demonstrated that typosquatting packages assigned to
the Stdlib category accounted for 95.6% of installations and were almost only effective in
PyPI. By now, the package manager PyPI has added restrictions regarding such packages.
Package names that resemble native python libraries are now prohibited 3. Therefore, the
effectiveness of Stdlib typosquatting packages should be reduced. On npm, on the other
hand, only algorithmically created and creative typosquatting names were successful, de-
spite the lower number of installations. The lack of Stdlib typosquatting packages on npm
is probably the result of the fact that npm already had a list of reserved package names
at that time 4.

A similar empirical analysis was performed in the literature [42], where about 5000
typosquatting variants of popular Docker images were created and uploaded. These ty-
posquatting variants were created mainly using typographical errors such as duplication
and Fat-Finger (insertions), deletion, and permutation (transposition). The literature
also mentioned misinterpretation (confusion of similar-looking letters and numbers, for
instance, 1 and I) as one of its typosquatting variants. However, this variant is not con-
sidered in this thesis due to the nature of typos and this variant being highly unlikely and
usually inferred by copying the package name instead of typing it. In 210 days, they ob-
tained over 40000 pulls. However, only a handful of the typosquatting variants constituted
the majority of the downloads, while most of them only had up to 5 downloads each.

4.2. Related Literature in Detection & Mitigation of Malicious Packages

As indicated in chapter Differentiation of Typosquatting Types, two properties must be
met for a package to be classified as typosquatting.

1. It should be evident from the name that a typosquatting attack takes place. The
first step is, therefore, the identification of typosquatting candidates.

2. A malicious intent in the source code must be recognizable
If both conditions are met, then the respective package is considered a typosquatting pack-
age. This structure is also reflected in the literature dealing with typosquatting attacks,
further confirming the differentiation between typosquatting packages and typosquatting
candidates [37], [43]. On the one hand, some works of literature focus on the detection

3https://pypi.org/help/#project-name (last visited: 14.01.2023)
4https://www.npmjs.com/package/validate-npm-package-name/v/2.2.2 (last visited: 14.01.2023)
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based solely on the package’s name to find typosquatting candidates, annotated as cate-
gory (𝑎). On the other hand, there is literature that has the general detection of malicious
code in packages as their objective (𝑏), but hybrid approaches, in which both approaches
are combined to find such typosquatting packages, also exist (𝑐). In the following, a brief
overview of the existing literature is given in chronological order, as well as a classification
of the literature.

4.2.1. Malicious Code Detection using Abstract Syntax Trees

The bachelor thesis [44] published in 2019 focuses on the PyPI ecosystem, using static
code analysis and the Damerau-Levenshtein distance. Therefore it can be assigned to
category 𝑐, methods that follow both approaches, with the focus on detecting malicious
code. Investigations on the package name are merely secondary. Using the Damerau-
Levenshtein distance with a maximum distance of 2, the author examined the 10000 most
popular packages and discovered 21230 typosquatting candidates. For the analysis and
discovery of malicious packages, the author pursued the approach of static code analysis.
In particular, Abstract Syntax Trees (AST) formed its foundations. In the process, the
Python source code is transferred into an AST and transformed using reduction rules. The
source code located in the setup.py is used for the AST. The setup.py is automatically
executed during the installation of the corresponding package. Subsequently, the AST
is traversed. Should a match with a semantic rule occur during the traversal, then this
is registered with further metadata. The Aura framework has been implemented, which
was used to scan the entire PyPI repository. After the execution of a global scan using
the Aura framework, a high number of false positives were detected, and no malicious
packages could be identified.

4.2.2. Detection of Suspicious Package Updates

The paper [45], which was published in 2019 and can be categorized as belonging to cat-
egory 𝑏, examines the payload rather than the package name. The work’s primary goal is
not to detect typosquatting packages but rather malicious code injections through updates
of existing packages. This work uses the anomaly detection approach, in which unnatural
updates are detected by their characteristics and behavior. Features were extracted from
a package’s metadata and source code for anomaly detection. The package manager in
focus here is npm. The following features were extracted:

• The use of the libraries: http, http2, https, net, fs, child_process
• The use of the eval function
• Whether new JavaScript files were added
• Whether new dependencies were added
• Whether a new hookup script was added

For this, 1518 packages were clustered and used representatively for regular package up-
dates. An outlier threshold was then determined using the distance between the centroid
(center of a cluster of data points) 𝐴 and the furthest data point of that respective cluster
𝐵. If a new data record is inserted into the cluster model and it turns out that the distance
between this data record 𝐶 and the nearest centroid 𝐴 is greater than the distance be-
tween the centroid 𝐴 and the farthest distant data point 𝐵, it is classified as suspicious. A
visual example is displayed in Figure 16. The model flagged 539 updates as suspicious on
a weekly basis, but no evaluation of the accuracy has been performed. Instead, the model
was successfully tested on the library eslint-scope, a legitimate library that was injected
with malicious code in the 3.7.2 update5.

5https://security.snyk.io/vuln/npm:eslint-scope:20180712
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Figure 16: Clustering of benign and suspicious package update [45]

Another work in a similar domain is the literature [46]. It deals with the detection of
anomalies during the introduction of malicious code. Expressly, it assumes and examines
whether malicious packages introduce more artifacts during installation than benign pack-
ages. Contrary to the previous work, which uses machine learning procedures, dynamic
code analysis techniques are used. Another difference is the scope their methods should
apply on. Instead of scanning the package manager’s ecosystem, the proposed framework
should be integrated into a local development environment. For this, eight benign pack-
ages, which were attacked over time and injected with malicious code, serve as the data
basis. The benign versions are then compared with the malicious version as well as their
artifacts. Examples of such artifacts would be whether files were created or an internet
connection was established. The packages’ activity was monitored in a sandbox environ-
ment, which meant that system calls made by the package were recorded. The resulting
observables or artifacts are then extracted from the system calls. The differences between
the artifacts introduced by benign and malicious packages were analyzed to determine the
responsible artifacts for malicious behavior. The result of this work is that the hypothesis
of whether malicious updates introduce more artifacts than their benign counterpart could
be confirmed; thus, most malicious versions introduced about 225% more artifacts than
benign versions.

4.2.3. Detection of Typosquatting Packages using Signals

Two works can be included in this section, namely [47] and [12]. Both works can be
assigned to category 𝑎, papers that detect typosquatting packages based solely on their
name and eventually metadata. At first, the Levenshtein distance was used to detect
typosquatting candidates, but this led to high false positives, which prompted a new
approach. The proposed method is based on six trigger signals. If any of these six signals
are triggered, the respective pair is marked as a typosquatting candidate. The triggers
used in the literature are:

• Repeated characters (e.g. requeest attacks request)
• Omitted characters (e.g. comander attacks commander)
• Swapped characters (e.g. axois attacks axios)
• Swapped words (e.g. import-mysql attacks mysql-import)
• Common typos (substitutions based on physical locality e.g. uglify.js attacks uglify-

js)
• Version numbers (e.g. underscore.string-2 attacks underscore.string)

In order to reduce the false positive rate, additional metadata of the respective packages
were used, whereby in particular, the popularity or the number of the downloads is taken
into account. The method mentioned here was capable of detecting approximately 60%
of the typosquatting packages known so far, marked as such by npm. The 60% is due to
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the difference in the definition of typosquatting packages between the researchers and the
npm team. This framework’s primary intention is to extend the installation process by
introducing a verification step displayed in Figure 17.

Figure 17: TypoGuard installation process [47]

4.2.4. Typosquatting and Combosquatting Attacks on the Python Ecosystem

The paper by [37], examines and identifies typosquatting and combosquatting packages
via their names and metadata and is therefore located in category 𝑎. As the name suggests,
the focus was limited to the PyPI repository. First, the following assumptions are made:

• Packages whose repository names on GitHub are identical are not squatting packages
• Packages with different names on the GitHub repository side and in PyPI need

additional verification.
The Levenshtein distance is used to find typosquatting candidates, where the upper bound
for the number of operation steps is set to two. This was determined heuristically based
on 36 already known typosquatting packages. With this step size, 21 of the 36 squatting
packages can be identified while the number of false positives is reduced. Furthermore, the
package names are normalized to discover combosquatting packages (classified as confused
in this thesis). Thus, frequently occurring prefixes of squatting packages, such as ”python”,
are replaced by ”*”. This research has resulted in the process depicted in Figure 18.

This process was used to analyze 216,548 packages from the PyPI ecosystem. The
findings were then statistically examined. An upper bound on the Levenshtein distance
of 2 proved promising, as most typosquatting packages could be detected while keeping
the number of false positives manageable. Although the number of false positives was not
specified in more detail. A false positive could occur when the package name and GitHub
repository name differ because the package’s name might have already been taken. It has
also been found that the existence of packages whose names have similarities to modules
from the standard python libraries is not necessarily malicious. In the end, the following
approaches have been suggested to reduce the number of false positives:

• Analysis of package metadata (e.g., author reputation, package popularity)
• Suspicious source code characteristics (e.g., suspicious API calls)
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Figure 18: Indentification logic of squatting packages [37]

4.2.5. Malicious Package Detection Framework - MalOSS

The paper [43], belongs to category 𝑐 and identifies typosquatting packages by pack-
age name and payload. While the framework is intended to detect malicious packages
in general, it has explicitly included procedures to detect typosquatting packages. For
this purpose, the framework MalOSS was introduced, which uses different areas of code
analysis. The framework consists of four components: The metadata analysis, the static
analysis, the dynamic analysis, and the verification phase, in which packages marked as
suspicious are manually verified. The metadata analysis includes the examination of the
package name with the use of edit distances, which were not specified in more detail. Nev-
ertheless, metadata information such as author, downloads, dependencies, and what types
of files are contained in the package are examined. In the static code analysis, the source
code is analyzed with the help of three subcomponents: Manual API Labeling, API Usage,
and Dataflow Analysis. In principle, during this stage, it examines which interfaces to the
system the packages use, e.g., which libraries were used, and which semantics and behav-
ior can be inferred from the source code. With the dynamic code analysis, the package
is analyzed and observed during the runtime in a closed system. Thus one can determine
the behavior of a package, for example, whether a library establishes a connection to the
internet without understanding the source code. In addition to providing the MalOSS
framework, a qualitative analysis of similarities and differences in the package managers
PyPI, npm, and RubyGems was carried out. MalOSS used the following three heuristic
groups:

• Metadata Analysis
– Similar package names to other popular ones in the same package repository.
– Same package names but different authors across package repositories.
– Author of the package is known to have been involved in the distribution of

malicious packages.
– Package has older versions released around the time as known malware.
– The package contains Windows PE files or Linux ELF files.

• Static Analysis
– Package has customized installation logic.
– Package adds recently released versions of network, process, or code generation

APIs.
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– Package has flows from filesystem sources to network sinks.
– Package has flows from network sources to code generation or process sinks.

• Dynamic Analysis
– Package contacts unexpected or suspicious IPs or domains.
– Package reads from sensitive file locations.
– Package writes to sensitive file locations.
– Package spawns unexpected processes.

This framework resulted in the discovery of 339 malicious packages that were previously
undetected, spread across three different package managers, PyPI, npm, and RubyGems.

4.2.6. Supporting the Detection of Software Supply Chain Attacks through
Unsupervised Signature Generation

Another paper [48] can be assigned to category 𝑏 focusing on the payload [48]. The pro-
posed approach works under the assumption that most attacks on those SSCs occur in
waves. In a short time period, a large number of malicious packages are injected. There-
fore malicious codes of the packages are often similar or even the same as one another.
Additionally, similarities to packages from previous attack waves can also occur. In prin-
ciple, clustering methods are used in which similar malicious code variants are grouped
together. For this, the researchers examined the approach an analyst would perform to
identify malicious packages; the process is as follows:

1. The analyst gets informed about the presence of a suspicious package
2. The analyst searches through all code files for suspicious code fragments
3. The suspicious code fragments are compared to malicious code fragments in the past,

forming malware families
4. With this knowledge of malware families, the analyst scans the package repository

to detect potential members of the malware families
The proposed approach attempts to automate steps 3 to 4 using clustering algorithms.
Various clustering methods and their performance have been compared with each other.
This examination has led to the conclusion that the Markov clustering method, in connec-
tion with the transformation of the source code into an AST, has led to the best result.
An F1 score of 0.9851 has been achieved. As a data basis for the evaluation of the dif-
ferent procedures, 114 malicious packages from the datasets provided by the paper [35]
were used. Afterward, this method was additionally tested on the entire npm ecosystem.
When tested on the npm ecosystem, seven packages were discovered, four of which were
confirmed as actual malicious packages. Two packages were labeled proof-of-concept and
one non-malicious but dependent on a malicious library. The advantage of this method is
that it is resistant to type 1 and type 2 modifications of code fragments (the renaming of
variables and literals) and, thus, against simple obfuscation techniques.

4.2.7. Practical Automated Detection of Malicious NPM Packages

The paper [41] uses machine learning as well as various other methods for detecting ma-
licious packages in general and is therefore classified in category 𝑏. The proposed process
is called Amalfi and consists of three components, a classifier, a reproducer, and a clone
detector. The features used for training the classifier are:

• Access to personally-identifying information (PII)
• Access to specific system resources
• Use of specific APIs
• Use of package installation scripts
• Presence of minified code (to avoid detection) or binary files

Three different machine learning methods were used and compared for the classifier: De-
cision Trees, Naive Bayes, and Support Vector Machines. These have the task of deciding
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whether the package is benign or malicious. Depending on how the classifiers have classi-
fied the package, the clone detector and reproducer components do the rest of the analysis.
Their primary purpose is to reduce the number of false positives. The reproducer checks
whether the source code of a package can be reproduced with the repository provided by
the maintainer. If that were the case, the package would be considered benign. At the
same time, the clone detector creates a hash value for the packages and checks whether
this is identical to the hash values of malicious packages that have already been detected
in the past. The Amalfi model was then checked for the latest packages for seven days.
The following results were obtained.

Table 3: Result of Almafi’s analysis [41]

As one can see, on the first day in Table 3, 23452 different package versions were
analyzed, 35 of which turned out to be real malicious packages and therefore labeled
as true positives. 858 false positives were detected, meaning packages were found to be
malicious but were benign. As a result, some adjustments were made so that on the
second day, the number of false positive messages was reduced. In total, Amalfi was able
to detect 95 previously unknown malicious packages. Afterward, the model’s suitability
was re-evaluated on a dataset that had already been labeled. The results were as follows:

Table 4: Amalfi’s classification report [41]

As indicated in Table 4, the evaluation of Amalfi on the dataset used to train and test
Amalfi (Basic) has a precision of at least 90% in all three machine learning methods. That
means that the packages that were classified as malicious were actually malicious in 90%
of the cases. However, the recall rate was relatively low at 19 - 43%. This means that only
19 - 43% (depending on the classifier) of the total number of malicious packages in the
dataset could be correctly identified as such, leaving the rest undetected. The precision
of Amalfi reduced to 35% when tested on the dataset provided by the literature “Towards
Measuring Supply Chain Attacks on Package Managers for Interpreted Languages,” while
recall improved by approximately 20%.

4.3. Approximate String Matching

For detecting typosquatting candidates, the Levenshtein or variations of it were mostly
used in the examined literature. The problem with which one deals here is also called
Approximate String Matching and was also examined frequently in the past [14]. Especially
in the area of databases and record linking, where one tries to map the datasets from
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different databases to each other, as well as in the census, such methods are frequently
employed. For instance, by mapping the datasets correctly to each other despite typing
errors [49]. The work [50], concerns itself with comparing four different distance metrics.
For this purpose, the metrics were used to link datasets from two different hospitals. The
four metrics used are the Levenshtein distance, Longest Common Substring, Jaro-Winkler
similarity, and RMS, a combination of the previously mentioned metrics. The result of the
work indicated that the Jaro-Winkler similarity had the highest number of true positives.
The work [20], on the other hand, compared the Jaro-Winkler similarity with the Ratclif-

f/Obershelp algorithm, also known as Gestalt-Pattern-Matching [22]. For the comparison,
two databases were taken as the basis of correct words. One database contained 236000
entries, and one with 58000 entries. Subsequently, five test subjects were asked to type
text passages from various sources, e.g., Wikipedia. Correcting the typing errors was
not allowed. The algorithms now had to find the three most similar words based on the
mistyped word. These algorithms were then evaluated depending on the position of the
correct words in the list. The algorithms were assigned a score from 0 up to 3 points.
Three points were awarded if the right word was in the first place, and 0 points if the right
word was not in the list. The result was that the Ratcliff/Obershelp or Gestalt-Pattern
algorithms performed 4-18.6% better than the Jaro-Winkler similarity.
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4.4. Key Takeaways

Literature Category Methods used
for names

Method used
for payload Year

Attacks on Package
Managers

Malicious
code, Pack-
age naming

Damerau-
Levenshtein

Static code anal-
ysis 2019

Detecting Suspicious
Package Updates

Malicious
Code None k-means Cluster-

ing 2019

Towards Detection of
Software Supply Chain
Attacks by Forensic
Artifacts

Malicious
Code None Dynamic code

analysis 2020

SpellBound: Defending
Against Package ty-
posquatting

Package
naming

Custom defined
6 Signals, Leven-
shtein, Metadata
analysis

None 2020

Typosquatting and
Combosquatting At-
tacks on the Python
Ecosystem

Package
naming

Levenshtein,
Metadata None 2020

Towards Measuring
Supply Chain Attacks
on Package Managers
for Interpreted Lan-
guages

Package
naming,
Malicious
Code

Not specified

Metadata anal-
ysis, static code
analysis, dynamic
code analysis

2021

Supporting the Detec-
tion of Software Supply
Chain Attacks through
Unsupervised Signature
Generation

Malicious
Code None

Markov Cluster-
ing, static code
analysis

2021

Practical Automated
Detection of Malicious
npm Packages

Malicious
Code None

Decision Trees,
Naive Bayes,
SVM, Repro-
ducer, Clone De-
tection

2022

Table 5: Short overview of the mentioned literatures and their methods

As one can see from the specified literature, there are various approaches for detecting
both typosquatting candidates and malicious code. However, only a few of them provide
more detailed information about the accuracy and effectiveness of the proposed method
[41], [48]. On the one hand, this is due to the scarcity of data, as upon discovery of
malicious packages, these are immediately removed by the package manager authorities.
On the other hand, it is in the nature of such problems that one does not know the quantity
of actual malicious packages or benign packages in those repositories, which is why it is
hardly possible to evaluate the effectiveness and accuracy in greater detail if applied to
real-world environments. Thus, the only way to provide the presented method with more
accurate metrics would be to run the method on already existing datasets. The work [35],
is one of the few to offer a larger dataset of malicious packages.
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Regarding typosquatting candidate detection using distance metrics, the Levenshtein
distance and the Damerau-Levenshtein distance are the preferred candidates [37], [44].
Even though the problem of approximate pattern matching is being addressed here, lit-
erature in the field of record linking as well as spelling correction provides an outlook on
other metrics that could be more effective than the methods tested so far. A combination
of the (Damerau-)Levenshtein distance and the method proposed in the paper [47] would
be worth an attempt. One of the reasons is that (Damerau-)Levenshtein distance does not
take into account the characters’ positions on a keyboard as in the literature [47] does.
Section 6.2 explains in more detail the beneficial inherent characteristics of the Damerau-
Levenshtein distance. Therefore, modifying the (Damerau-)Levenshtein distance could
provide positive results. From the thesis [13], one can additionally infer that only a mi-
nor part of his typosquatting packages accounted for a significant part of the downloads.
Whether such an observation is also the case for other typosquatting packages should be
investigated. If such an assumption can be confirmed, it is possible to apply the methods
specifically to those effective typosquatting packages, which have at least one crucial ad-
vantage. It would possibly reduce the number of false positives since one does not seek to
find as many typosquatting packages as possible (which would be ideal but might cause
a high false positive rate), but only those that are particularly effective. ”Effective ty-
posquatting packages” refers to packages that successfully trick users into downloading or
using them by mimicking legitimate software or packages. Therefore a possible measure-
ment is the number of victims deceived by that particular package. Moreover, effective
typosquatting packages must be distinguishable from other typosquatting packages by
certain properties. The more specific the search criterion is, the lower the false positive
rate should be.
When it comes to literature comparing the various package managers, there is a need for

more of these, whereby by package manager here explicitly application package managers
are meant, which manage libraries for software development. Only one piece of literature
could be found here, in which at least the package managers npm and PyPI are examined,
namely [43]. The majority of research on package managers tends to focus on those
that manage operating system tools, like apt for Linux [51], [52]. There are two crucial
differences that present issues with this type of package manager. The first one is the
smaller number of uploaded packages. The second and more crucial difference is that they
are strictly regulated, and only authorized developers can upload to these repositories.
Besides the permission, the proposed package to be uploaded is also verified by a trusted
maintainer.
Rice’s theorem states that it is impossible to algorithmically classify a package as either

malicious or benign due to its close relationship with the undecidable halting problem.
However, there are alternative approaches to identifying potentially malicious packages,
such as using machine learning algorithms or statistical analysis to detect specific charac-
teristics [41]. While these methods have shown promise in improving the overall detection
rate of malicious packages, it is important to note that there may be other approaches
as well that can be explored [43], [46]. Most of the works of literature presented here
have one thing in common. In this respect, they extract features or certain characteristics
from the malicious code and localize them into the categories ”indicates malicious intent”
or ”is benign, is safe”. Only the selection of features, their form, and their further pur-
pose differ. How the extracted features are used is relatively balanced between machine
learning and static/dynamic code analysis. The most common characteristic extracted
from the packages is the detection of suspicious API calls either by static code analysis
or dynamic analysis. The two works, which evaluated their procedures based on already
known malicious packages and provide predictive values like a classification report, are, on
the one hand, [48] and on the other hand [41]. Both provided good results when evaluated
on already labeled datasets. However, there is a significant drawback to the paper [48].
Only malicious packages that have a high similarity or are identical to previously known
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malicious packages are detected in this case. Malicious packages whose source code differs
from the previously found packages will not be detected.
While the paper [41] provides a more robust approach, the evaluation of the proposed

method on an unknown dataset resulted in a lower precision. Therefore the following
methods (grouped by the scope of the problems) are proposed:

1. A dataset of typosquatting packages will be collected with their metadata and source
code.

2. Package manager comparison
a) A qualitative analysis will be performed on various package managers in regard

to their vulnerability and properties.
b) Derivation of a correlation between package manager properties and their vul-

nerability.
3. Measuring the effectiveness of various typosquatting packages and the detection of

typosquatting candidates.
a) A statistical examination of the collected typosquatting packages will be per-

formed on their names and their effectiveness.
b) Using the statistical insights, a threshold for the five proposed string metrics

should be derived.
c) Using the string metrics and their derived threshold, an evaluation of real-world

packages of the npm ecosystem should be performed.
4. Detection of malicious intent in typosquatting candidates

a) The dataset of typosquatting packages will be examined for commonalities and
differences in the maliciousness of a package.

b) Selected features of malicious packages will be proposed based on the common-
alities of typosquatting packages.

c) A dataset based on the proposed features will be generated and used to train
a Decision Tree model while additionally extending them through a Random
Forest model.

d) Evaluate the models’ accuracies based on the datasets collected for this thesis
(internal dataset) and a dataset provided by the literature Backstabbers Knife
Collection (external dataset) [35].
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5. Methodology

To maintain clarity and comprehensiveness, this thesis has separated the discussion of
selected approaches and their explanations into the sections Comparison of Package Man-
agers, Effectivity of String Metrics for Typosquatting Packages, and Detection of Malicious
Packages. This chapter focuses solely on the methodology for acquiring datasets and as-
sociated data preprocessing steps. Due to the scarcity of data in the field of typosquatting
packages, as discussed in Key Takeaways, only a limited number of datasets are available.
Therefore, new typosquatting packages must be collected. While The Backstabbers Knife
Collection dataset contains numerous malicious packages, the attack targets for just over
100 typosquatting packages were known. Therefore, additional data was taken from the
three most well-known companies specializing in malicious packages in software supply
chain systems, Sonatype 6, Snyk7 and Phylum8.

5.1. Acquisation of Typosquatting Packages

The companies mentioned above provide their discoveries in various ways. Phylum and
Sonatype, for example, regularly write blog entries listing their found malicious packages.
On the other hand, Snyk makes their discoveries and information available in a database,
some of which they also collect from other security companies. However, access to the
database is currently limited to entries of a specific time period. The data entries were
manually collected, grouped, and entered. In addition to Snyk’s database, all blog entries
at Phylum and Sonatype that offered information regarding the listed malicious packages
were examined. There were 82 blog entries in total. The information provided was grouped
according to two criteria: the package manager affected by the attack and whether it was
a typosquatting package. The respective package was only assigned to the typosquatting
package group if the target package of the attack was also specified. Otherwise, it was
assigned to the Unknown Attack Vector group. Since the affected package manager was
sometimes not specified, there was also an Unknown Package Manager group in addition to
the other package manager groups. Even though the figures below display the distribution
of npm, PyPI, Maven, and Unknown package managers, other package managers’ data
has also been collected. The process of data collection concluded on the 14th of December,
2022.
The Figures 19, 20, 21, one for each source of information, illustrate the number of ma-

licious packages with unknown attack vectors and the number of typosquatting packages
depending on the package manager. One can observe quite quickly that:

• Most of the malicious packages were detected for npm, packages with unknown
attack vectors as well as typosquatting packages (for each source)

• For Maven, hardly any malicious packages were detected (for each source)
• For many of the packages, the affected package managers are not specified

In the case of Snyk, no information about the targets of the typosquatting packages has
been provided, which is why we are only referring to malicious packages with unknown
attack vectors here.

6https://www.sonatype.com/
7https://security.snyk.io/
8https://blog.phylum.io/
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Figure 19: Distribution of data collected from Sonatype

Figure 20: Distribution of data collected from Phylum

Figure 21: Distribution of data collected from Snyk

31



Typosquatting Attacks and Mitigations

The number of packages for which the affected package manager is unknown is, at most,
2172 in the generated dataset. The upper limit of 2172 is due to the fact that both sources,
i.e., Sonatype and Phylum, can list the same package. The API of the web application
Libraries.io 9 was used to find the package managers where the attack was carried out.
Libraries.io maintains a comprehensive copy of more than 32 package managers, which
includes metadata like the package name, version, description, dependencies, and other
pertinent information. It is crucial to note that while Libraries.io maintains a mirror of
these package managers, it does not store the actual package files themselves, only some of
the accompanying metadata. For this, all packages whose package managers are unknown
were merged into a list. Then, duplicates were removed. Each library was queried via the
search API. As a return value, one receives a list of possible packages to be matched, as
well as the package manager on which the respective packages reside. In order to ensure
accuracy, each item on the list of possible package matches was individually verified. The
verification was achieved by comparing the name of the package being searched for against
the names of the packages on the list. If an exact match was found, the corresponding
package manager was flagged rather than aborting the search after the first match. This
approach was necessary because multiple package managers could have packages with
identical names. In such cases, any packages that could not be attributed to a specific
package manager were marked as unknown. Otherwise, if only one package manager were
flagged, it would be assigned to that flagged package manager. Packages assigned to the
category Unknown Package Manager were further analyzed manually. Figure 22 shows a
visualization of the process.

Figure 22: Package manager identification process

9https://libraries.io/

32



Typosquatting Attacks and Mitigations

Of the 1408 packages extracted from Sonatype with an unknown package manager, 1153
could be assigned to npm. 231 were assigned to PyPI, and 24 remained unknown and were
analyzed manually. Among the 24 manually analyzed packages, seven could be assigned
to the package manager npm and four to the package manager PyPI, resulting in only
13 packages for Sonatype that could not be assigned to any package manager. For the
764 packages from Phylum with an unknown package manager, 710 could be assigned to
npm and 48 to PyPI. Of the six which remained unknown, three could be assigned to the
package manager PyPI through manual analysis. Figures 23 and 24 further visualize the
distribution of the identification process.

Figure 23: Sankey diagram of packages with unidentified package manager from Sonatype

Figure 24: Sankey diagram of packages with unidentified package manager from Phylum

There could be several reasons why further identification of the attack package manager
could not be achieved. One example would be that the package’s name was incorrect.
Another reason may be that the package was removed before Libraries.io could produce a
copy. Thus packages that could not be assigned to any package manager are not further
considered in this thesis. The adjusted final distribution from the different sources is
shown in Figures 25, 26.
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Figure 25: Adjusted Sonatype package distribution

Figure 26: Adjusted Phylum package distribution

5.2. Data Cleansing and Preprocessing

For further processing, the datasets from all three sources were combined. That means
all typosquatting packages from the different sources were merged into one list, and all
packages for which the attack vector is unknown were merged into a second list. Sub-
sequently, all duplicates in both lists were removed. If the same packages were named
with different attack targets in the typosquatting packages, the attack target with the
highest downloads was taken. Example: Two legitimate packages named jsonb and json
exist. The typosquatting package jsonm is listed at Sonatype with the legitimate package
jsonb as the attack target. At the same time, Phylum names the typosquatting with the
legitimate package json as an attack target. In such cases, the legitimate package with the
larger download count would always be taken as the attack target. In addition, the list
of malicious packages, for which the attack vector is unknown, was checked to verify that
they were not listed in the list of typosquatting packages either. In this case, they were
removed from the list of packages with unknown attack vectors. After the first step of
preprocessing was done, for each typosquatting package and its attack targets, a manual
check was performed to ensure that each of the listed packages had been correctly reported;
in other words, whether the respective typosquatting package existed and its attack target
existed. The reason for this is that when listing the packages in the Sonatype or Phylum
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blog posts, additional typos may have been introduced. Therefore the following processes
have been applied to the datasets:

1. Merge the datasets from different sources into one dataset, respective to their cate-
gories

2. Remove duplicates for each dataset
3. Adjust typosquatting packages with the same package name but different targets
4. Check if typosquatting packages are listed in both categories
5. Check if every typosquatting package and its targets existed

Additionally, two of the five malicious packages mentioned in Snyk for Maven seem to
be false positives or preventional flags. The versions that were identified as malicious
were never released on Maven, only on npm. The names of the flagged artifacts are
org.webjars.npm:coa and org.webjars.npm:rc. Malicious packages for the package manager
RubyGems, Crates, and Packagist were mostly provided by Snyk and Sonatype, while no
malicious packages were found for NuGet and Go. No special processing was required
for the other package managers due to the limited datasets. In the case of RubyGems,
while the blog entry mentioned that the 725 packages were typosquatting packages since
no attack targets were mentioned for the packages listed, the definition for packages in the
typosquatting packages category defined in section 5.1 is used here and thus categorizes
the 725 packages as packages with unknown attack vectors. The execution of the processes
in the mentioned order leads to the following final result for all package managers:

Figure 27: Overall package distribution

5.3. Acquisation of Metadata & Source Code

As indicated in the figure, npm has the most typosquatting packages. Therefore fur-
ther in-depth investigation will be focused on them. Currently, only the names of the
typosquatting packages and the names of their targets were retrieved. The source code
and the metadata of the packages have yet to be obtained. If a malicious package has
been reported to npm, only the source code is typically removed, but the package can still
be installed using the command line command. However, only a package without source
code and thus without functionality is downloaded. Sometimes, libraries are completely
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removed, leaving hardly any metadata available. The metadata was retrieved from the
API of npm itself when available. Thus, for the 400 npm typosquatting packages, the
following metadata has been collected:

• Date of release of the package
• Date of removal of the package
• The last version number
• The number of versions
• Number of downloads since the release until 01/30/2023
• Whether the package was removed completely

Among the 400 typosquatting packages, the metadata could be retrieved for only 266
of the packages. The metadata for the remaining packages are not retrievable since the
packages had been removed entirely. In addition, the source code for the 400 typosquatting
packages must now be acquired. This a relatively tricky task since npm attempts to remove
all traces of such packages. The only way to gather the source code of such malicious
packages is via other npm mirrors, replication from blog entries, or GitHub issues; Some
of the packages’ source codes were also present in the Backstabber’s Knife Collection
dataset. In the end, the source code of 396 out of 400 typosquatting packages could be
tracked down. The forthcoming analysis is divided into three phases. The first analysis
focuses on the correlation between package manager properties and their vulnerability in
terms of malicious package uploads and typosquatting packages. The second analysis deals
exclusively with the package name and its impact on the effectiveness of typosquatting
packages. For this phase, 266 datasets with metadata are available. The third phase deals
with the detection of malicious intent in the source code. For this, 390 datasets with source
codes are available. For the targets of the typosquatting packages, the metadata and the
source code have also been retrieved and will serve as a dataset for benign packages in
this thesis.
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6. Mitigation and Detection of Typosquatting Packages

As mentioned in the section Outline, the following chapter is the central part of this thesis.
The first subchapter examines how the vulnerability of package managers is related to their
properties in order to derive possible conclusions. However, at this point, it will be noticed
that this is not entirely straightforward and that the realization of the proposed properties
is not practicable. Therefore we will focus on an alternative approach, the detection of
typosquatting packages. For this, the subsequent two subchapters are dedicated to this
topic. The first subsection examines the effectiveness of different string metrics in finding
typosquatting candidates. The second subchapter deals with the follow-up method for
automatically classifying typosquatting candidates. Here, typosquatting candidates will
be examined for malicious code to classify them as typosquatting packages.

6.1. Comparison of Package Managers

The following eight package managers were chosen: npm, PyPI, Maven, RubyGems, Pack-
agist, NuGet, Go, and Cargo. The reasoning behind this choice is that according to
Libraries.io (as of 19.02.2023), these are the eight largest package managers in software
development. The largest package manager is npm, with 2.3 million packages, followed
by PyPI, Go, NuGet, Packagist, RubyGems, and Cargo, listed in the order of available
packages. An exact breakdown of the number of packages (as of 19.02.2023) is given in
Table 6. If possible, the information was taken from the package managers themselves.
Otherwise, Libraries.io was taken as a source.

Package man-
ager

Number of
packages

Number of ma-
licious pack-
ages

Ratio

npm 2,306,551 4131 0.179%

Maven 524,731 3 0.00057%

PyPI 443,554 1678 0.378%

Go10 439,577 0 0%

Packagist 363,789 2 0.00055%

NuGet 342,855 0 0%

RubyGems 175,307 725 0.413%

Cargo 105,297 2 0.0019%

Table 6: Package manager statistics

A distinction is made between dependent and independent variables. In this thesis, it
is assumed that the dependent variable, for example, the number of malicious packages,
is dependent on the independent variables, the properties of a package manager. The
properties selected to compare each package manager were partly obtained from the paper
[43], adopting the points that contribute to the vulnerability of a package manager in terms
of malicious package injection. For instance, if multiple malicious packages were published
in a short period of time by multiple user accounts, it is plausible that the attacker used
automation to create multiple accounts to perform the attack. For this, CAPTCHAs may
provide a resolution. It is, therefore, necessary to determine the correlation between the
number of malicious packages and the properties of the package managers. In addition to
the statistics given in Table 6, further properties for each package manager were collected

10Retrieved from libraries.io

37



Typosquatting Attacks and Mitigations

to the best of our knowledge. The various libraries were examined for the following
characteristics:

• Execution of scripts during the installation (Install Hooks)
• CAPTCHA (CAPTCHA)
• Mandatory specification of a repository in which the source code resides (Mandatory

VCS)
• Installation of packages through command line interface (Install through CLI)
• Verification of uploaded packages both manually and automatically (Code Scan)
• Namespace system (Namespace system)
• Effort for publishing new packages (Complexity)
• Number of packages (Number of Packages)
• Popularity for the supported programming language (Popularity Rank) 11

In more detail, the Install Hooks describe the ability to execute arbitrary scripts and
code during installation. During the observations, the following instances for this prop-
erty could be observed: ”native”, natively supported, ”workaround” if a workaround is
necessary, ”partly” (e.g., through the build process), and ”no” for no support at all. The
CAPTCHA property describes whether a CAPTCHA must be solved to successfully fin-
ish the registration process of a new account, indicated by ”no” if not needed or ”yes” if
needed. For this, indirect CAPTCHA integration has also been considered. For instance,
some package managers require a GitHub account to publish a new package. For GitHub,
a CAPTCHA has to be solved to create an account. The property ”Mandatory (VCS)”
is the necessity to upload the package onto a version control system (VCS), e.g., GitHub,
and linking these together, the package manager will then use the provided repository as
their source for the package. Package managers here can be categorized into two types.
The first type uses the mentioned approach. The second one, implemented by most pack-
age managers, is that the packages reside directly in the package manager’s repository,
and a link to a VCS repository can be specified optionally. The source for the package is
thus only uploaded to the package manager’s repository. Even if the VCS repository is
specified, the package manager will still use the package which resides in the package man-
ager’s repository as the source. Type one is indicated by the value ”yes” and type two with
”no”. The property ”Code Scan” describes whether a code scan is performed manually or
automatically. If a code scan is performed, this is indicated by ”yes”. Otherwise, the value
is ”no”. The namespace system describes the characteristics of the naming system used for
naming packages. They are distinguished into three categories: ”name” if only a package
name is needed, ”group (optional) and name”, if the specification of a group is optional and
a name is necessary, and ”group and name”, if a group identifier is mandatory. A possible
package name for the category ”group and name” could be <groupId>.<package name>
in case of Maven or <groupId>/<package name> in case of Packagist. The property
”Number of Packages” is an integer value describing the number of published packages in
a package manager. The property ”Popularity” describes the percentage of people who
voted for the supported programming language of the package manager. For instance, if
respondents voted 48.07% in favor of the programming language Python, then the popu-
larity value of PyPI is 48.07%. One has to mention that respondents were allowed to vote
for multiple programming languages. Thus 48.07% of the respondents voted for Python.
The following procedure has been performed to determine the complexity of publishing
a package. Firstly, the upload process of a new library was recorded in steps across all
package managers. Subsequently, the different steps were compared with one another and
examined for commonalities. After comparison, all package managers could be classified
into three groups. The first group, corresponding to the complexity ”simple”, can be
described by the following process.

1. Creation of a metadata file

11https://survey.stackoverflow.co/2022/#technology-most-popular-technologies
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2. Execute command to start the initialization of a package
3. Perform authentication
4. Upload the package with a command

An additional intermediate step is necessary for the complexity ”advanced ”, where the
respective package has to be uploaded to a repository or version control system. For the
complexity ”complex ”, permission for uploading a library has to be granted in addition to
the steps of the complexity ”simple” by the authorities. The information for the properties
of the various package manager was retrieved either from documentation, contributions,
or determined by practical tests.

After the creation of this dataset, normalization was performed in two ways. The
first type of normalization converts absolute values into a relational order. Instead of
using, for example, the raw numbers of malicious packages detected per package manager,
a mapping was performed to rank the package managers according to the number of
malicious packages contained within said managers. Such a ranking was performed for
the popularity, the number of all packages, and the number of malicious packages. The
background to this is the relative ranking of the various package managers according to
their vulnerabilities and the determination of a possible correlation. Additionally, a new
property has been added, ”Ratio rank”, denoting the ratio of malicious packages and all
packages in a package manager in a relational order. The ranking started at position 0 for
being the least vulnerable. Therefore the higher a value is, the more vulnerable a package
manager is, indicated by the specified dependent variables (Malicious package rank or
Ratio rank). If package managers were assigned the same values before the relational
normalization, they were given the same rank.

The second type of normalization is done on the properties of the package managers.
Here, an estimation was performed for each instance of a property. For example, to
normalize the property namespace system, all instances of this property are first mapped
to a whole number. The higher the number, the less practical the realization of such an
instance is for a package manager’s security. For the property namespace system, there are
the following instances: ”name”, ”group (optional) and name”, and ”group and name”.
In total, there are three instances. If one positions themselves as described above, the
value of an instance decreases as it becomes more advantageous to the system. Therefore
the rank would start from zero to two for the following instances: ”group and name”,
”group (optional) and name” and ”name”. This order suggests that ”group and name”
will benefit a system’s security the most, whereas ”name” will have the least positive
impact. This procedure has been performed on all properties. In the case of the property
”Install Hooks” the instances were: ”native”, ”workaround”, ”partly” and ”no”. For this,
the instances ”workaround” and ”partly” received the same value of one.

After the normalization, a correlation matrix will be calculated using the Spearman
correlation. This is because the created dataset does not fulfill certain requirements for
the Pearson correlation. In order to use the Pearson correlation, the data must be nor-
mally distributed and continuous [53]. Both requirements are not satisfied by the provided
dataset. For the Spearman coefficient, however, this is not necessary. In fact, the Spear-
man correlation works especially well on nonnumerical data as long as they can be classified
through, for instance, a relational order [54].

6.1.1. Results

The values provided in Table 7 result from the data acquisition mentioned in the section
above. This data frame contains all the package managers with the properties and the
dependent variables. After performing the normalization described in chapter 6.1, the
matrix in Table 8 is created. A correlation matrix is performed using the Spearman
correlation to determine a correlation in this normalized table. The resulting matrix can
be seen in Figure 28.
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Table 7: Comparison of package managers

Table 8: Normalized package managers matrix

Figure 28: Spearman correlation matrix
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6.1.2. Discussion & Interpretation

Figure 28 shows an apparent color distinction. The Spearman correlation was used to
calculate the correlation matrix there. It indicates how much two properties correlate
with each other. The value -1 indicates an opposite correlation, 0 for no correlation,
and 1 for a perfect correlation [54]. For example, if properties X and Y correlate with
a positive correlation coefficient larger than 0. Thus Y becomes larger when X becomes
larger, and vice versa. The larger the value, the stronger the correlation. Since only the
correlations between the dependent variables (Malicious package rank and Ratio rank) and
the independent variables (package manager’s properties) are interesting for this thesis,
only the values of the first two columns are to be examined. Alternatively, one could only
observe the first two rows due to the symmetry.
According to the Spearman correlation matrix, the most significant positive correlation

for both dependent variables is caused by the property CAPTCHA. This indicates that a
package manager that does not use a CAPTCHA has more malicious packages. A plausible
hypothesis might be that the inclusion of CAPTCHAs can reduce the number of automated
attacks. For example, an attacker can use scripts more efficiently to carry out automated
attacks against a package manager that has not included CAPTCHAs. The datasets or
malicious packages collected for this thesis indicate a high level of automation. Several
hundred typosquatting packages were uploaded to the npm ecosystem within minutes to
seconds. Whether a new user account was created each time in the process can no longer be
inferred from the metadata, as the authorities at npm overwrote it. Assuming the attacker
uploaded all malicious packages from the same user account, then this is also a flaw that
should be investigated. Further examination has also shown that there are users on npm
who uploaded thousands of packages on the same day. A total of 33485 non-functional
packages were uploaded by a particular user12, with each package being one Levenshtein
distance apart from the other. This polluted nature of the npm repository may explain
why previous literature received a lot of false positives. The automation is amplified by
providing a command line interface (CLI). Even though every package manager supports
the installation or addition of libraries through the CLI, only some package managers seem
vulnerable to typosquatting packages. Herefore, more than the existence of support for
CLIs alone is needed to cause an increased number of attacks. This observation is also
reflected in the correlation matrix with a value of nearly 0, indicating no correlation.
The second largest correlation is caused by Install Hooks when looking at the dependent

variable malicious package rank. Furthermore, it is the third-largest correlation when
looking at the ratio rank. Here the cause is relatively straightforward. If a package
manager supports the execution of arbitrary scripts, attackers are provided with an easy
way to increase the effectiveness of the attack. If an attacker initiates an attack via the
Install Hook, the user usually cannot prevent it and does not even know that he has
been the victim of an attack. The only way to avoid this attack in npm is to set a flag
in the CLI. For PyPI, there is no way to prevent the execution of a script except by
not installing the library in the first place. If, on the other hand, the attacker relies on
his malicious code using the integration or import into the victim’s software as an entry
point, two conditions usually have to be satisfied. Firstly, in some instances, the victim
has to make a second typing error when importing the library, and secondly, the victim
has to run the program after the library has been imported. The probability of a second
typo alone, which must be identical to the previous one, is already relatively low. Some
integrated development environments (IDE) may reduce the need for a second typo due to
auto-completion. Nevertheless, the chance of detecting that a typo was made is increased.
The third largest correlation by both dependent variables is caused by the obligatory

upload to a VCS repository. The repository in question is used as the source for the package
involved. One possible justification for such a correlation is the additional overhead. Thus,

12https://web.archive.org/web/20230220023533/https://www.npmjs.com/ infinitebrahmanuni-
verse?activeTab=packages
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the attacker must create an account for both platforms, that of the package manager and
that of a version control system such as GitHub, whereby most platforms that offer such
services are additionally protected against automatic attacks by CAPTCHAs. Another
possible explanation is the disclosure of the source code, which increases the risk of being
detected.
The second-largest correlation in terms of ratio rank is the namespace system, with a

correlation value of 0.78. But ”only” with a correlation value of 0.48 with the malicious
package rank. The most straightforward answer is that the attack vectors, typosquatting,
and dependency confusion benefit from a weak naming system. Both attack vectors use
the naming systems as a point of entry. Although typos can still occur in package man-
agers with more complex naming systems, it is plausible that these occur at a reduced
rate. One possible reason is that group identifiers lengthen package names, leading to
copying the library name instead of typing it. In the case of Maven, one must also prove
that one owns an associated group domain. Dependency confusion benefits from this be-
cause companies, for example, use private repositories to manage their internal libraries.
Attackers may now upload packages that have the identical package name as the packages
in the private repository. If, in addition, the malicious package has a higher version and
the package manager client has been misconfigured, the package manager will look in the
public repository to see if a library with the same name has a higher version there. If this
is the case, it will be downloaded instead. In this case, dependency confusion attacks ben-
efit more from simple naming systems than typosquatting attacks since the typosquatting
can be moved from the package name to the group name instead.
The correlation coefficients for popularity, the number of packages, code scan, and the

namespace system are in the same order of magnitude when correlated to the malicious
package rank. They positively affect package managers’ security, with a correlation coef-
ficient of about 0.5. However, the correlation between the ratio rank and the popularity
and package number rank is rather close to zero. One possible explanation is that the
ratio removed the influence of the number of packages as well as the influence of popular-
ity. For instance, if a package manager contains 100 packages, of which one is malicious,
then the ratio is 1%. Another package manager may have 1000 packages, of which ten
may be malicious, also resulting in a ratio of 1%. However, if ranked by the number
of malicious packages, the latter will have a higher correlation in popularity because the
popularity correlates with the number of packages and, therefore, with the number of
malicious packages. With the ratio rank, this has been reduced.
While the Spearman correlation gives approximate correlation directions, there may

be flaws in the accuracy of the correlation. An example of such a deficiency would be
that all properties, as well as individual elements used for the calculation, are weighted
equally. For example, the properties of Maven, which has five times as many packages as
Crates but still has nearly the same number of malicious packages, are weighted equally.
Crates may have fewer malicious packages, not due to the package manager’s protective
properties but rather its lower popularity. One possibility to counteract this would be,
instead of using the absolute number or rank of the malicious packages, the use of a ratio
between malicious packages and the number of all packages might be better. However,
the popularity would not be taken directly into the weighting, but only indirectly, since
the popularity of the package manager can be assumed to correlate with the number
of packages, which indicates that the Spearman correlation has another disadvantage,
and that is transitive considerations. They can only be considered if they are implicitly
specified as a property. A better approach could be a complex multivariant analysis.
Besides the limited possibilities of the Spearman correlation, another weak point is

the dataset. Knowing exactly how many malicious packages each package manager has
would be ideal. Since the number of malicious packages is only a sample, which comes
from the sources mentioned in chapter 5, it is plausible that the samples could have
a certain bias. Even if this bias becomes smaller by taking the samples from multiple
sources, this assumption of a small bias is nullified if all sources have the bias. Herefore,
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while the correlation matrix provides general directions that make a package manager less
vulnerable, how strongly these measures affect security is still questionable. Another issue
with the data is that the sample size may be too small, and the calculated correlation
is only coincidental. However, one could logically justify how certain properties might
contribute to increased safety. Therefore, the correlation matrix specifies directions that
ensure that a package manager is less vulnerable, but how strongly these measures affect
security is still questionable.
If the findings were true, one would run into another problem. The implementation of

the CAPTCHA in the package manager is simple. The realization of the other character-
istics takes much work. Since one must change all already existing packages under certain
circumstances, for example, if the Install Hooks were to be removed, some of the packages
and the software that integrates these packages would no longer work since these packages
depend on the Install Hooks. The same applies to the namespace system. If one wanted
to change this, all packages would have to specify a group id afterward. Therefore every
software that uses such packages must be updated both at the import and the metadata
level. Using a repository as a source for packages would also be invasive since not all pack-
ages on npm have a repository, and furthermore, one would have to change the structure
of, for instance, npm entirely as a result. In addition, when implementing the features
considered in this thesis, one must also perform a trade-off analysis between usability and
security, which is a discipline of its own [55]. Thus the least invasive intervention besides
a CAPTCHA would be a code scan. According to theoretical computer science, the clas-
sification of source code into malicious or benign is an undecidable problem. However, for
undecidable problems, approximations can be made using, for example, statistical analy-
sis, and a decision can be made based on this. This is why the following analysis focuses on
detecting malicious packages, particularly a subset of malicious packages, typosquatting
packages.
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6.2. Effectivity of String Metrics for Typosquatting Packages

For this examination, 266 of the 400 typosquatting packages were used due to the avail-
ability of their metadata. Firstly, the list was cleansed of libraries that are not considered
typosquatting packages. These packages were considered combosquatting packages or
categorized as confusion attacks according to the definition provided in section 3.2. The
following packages were therefore removed:

• ca-bucky-client with the target bucky
• noblox.js-proxy with the target noblox.js
• stringjs_lib with the target string
• twilio-npm with the target twilio
• discord.dll with the target discord.js
• support-colors, colors-update, colors-support, colors_express, sync-colors, colors-3.0,

colors-helper, colors-help, colors2.0 with the target colors
As such, out of the total dataset used in this chapter, which consists of 266 typosquatting
packages, confusion attacks or combosquatting packages account for only 5.26%. There-
fore, the remaining 252 typosquatting packages will be analyzed in detail in this chapter.
To conduct a statistical investigation on the effectiveness of typosquatting packages, it is
necessary to define the criteria that distinguish an effective package from a non-effective
one. In this regard, the number of downloads serves as an appropriate metric for mea-
suring the effectiveness of typosquatting packages. Since each package was released at
different times and naturally had different public lifespans for a download to occur, this
value must be normalized accordingly. The normalization was done by taking the ratio
between the total downloads and the days since the release. The end date was taken as
30th January 2023. This normalized value, i.e., the average number of downloads per day,
is now considered the dependent variable. The following Figure 29 presents the normalized
download rate of the respective packages, whereby the datasets were additionally sorted
by the average download of each package.

Figure 29: Average downloads per day of typosquatting packages
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Figure 29 emphasizes that only a handful of typosquatting packages seem particularly
effective, while the majority of the typosquatting packages are not. To determine the prop-
erty affecting the effectiveness of typosquatting packages, four string metrics Levenshtein,
Damerau-Levenshtein, Jaro-Winkler, and the Gestalt-Pattern-Matching algorithms were
applied using the Python libraries jellyfish and difflib. The Modified-Damerau-Levenshtein
distance, the fifth metric, has been implemented using Python13. This algorithm is based
on the Damerau-Levenshtein algorithm. Moreover, this algorithm incorporates a specific
property from the literature [47] that takes into account the adjacency of letters on the
English keyboard. It achieves this by iteratively examining whether the compared letters
are adjacent to each other on the keyboard and setting the corresponding costs that con-
tribute to the edit distance computation. For each iteration, the cost is reduced to 0.5
if the letters are adjacent and increased to 2 if they are not. The selected values of 0.5
and 2 are based on the rationale that plausible typos incur a lower cost, while implausible
values incur a higher cost. Specifically, the cost for a plausible typo is halved, resulting
in a value of 0.5, whereas the cost for an implausible value is doubled, resulting in a value
of 2. These costs are then utilized in the computation of the edit distance. The modified
version introduced the following rules:

• The cost for transposition is set to 0.5 e.g., raect ⟶ react
• The cost for substitution of adjacent characters is set to 0.5 e.g., react ⟶ resct (the

key ”s” is next to ”a” on the keyboard)
• The cost for inserted adjacent characters is set to 0.5 e.g., react ⟶ reacvt (the key

”v” is next to ”c” on the keyboard)
• The cost for omitted characters is set to 0.5 e.g., react ⟶ rect; the cost is set to 1

if the first character is omitted.
• Normalization of package names which include the suffix ”.js” have a cost of 0.5 e.g.,

react ⟶ react.js
• Everything else costs either 0 if the compared letters are equal or 2 otherwise.

There are three main reasons why the Damerau-Levenshtein has been taken as the basis.
The first reason is the support for manually adjusting the cost by simply changing one
variable. This is only possible for the Jaro-Winkler and the Gestalt-Pattern through
drastic changes in the equations or algorithm. The second reason is that the Damerau-
Levenshtein distance supports the transposition of adjacent characters. In the case of the
Levenshtein distance, this feature is not supported directly but indirectly through two
operations. However, introducing an accidental transposition is caused by a timing issue
of a few milliseconds. For instance, the difference between ”react” and ”raect” could be the
results of the key ”a” being typed a few milliseconds faster by accident than the key ”e”,
and therefore describing the transposition using only one operation step might be more
fitting. The last reason is that the Damerau-Levenshtein natively already performs checks
on the equality of letters. In this case, the check can be easily expanded by a neighbor
function that checks whether two keys on the keyboards are neighbors. If that is the case,
the cost will be adjusted accordingly. Therefore the Damerau-Levenshtein distance has
optimal requirements to be extended using the approaches from [12].

The normalized number of downloads defines the effectiveness of typosquatting pack-
ages. In contrast, the independent variable is represented by similarity or distance to the
target package. The scatter plots in Figure 30 illustrate the downloads with respect to the
distances or similarity between the typosquatting packages and the attack targets, with
each plot representing a specific metric. For example, the point in the plot titled ”Leven-
shtein vs. Average downloads per day”, assigned the X-value of 1 and the Y-value of 35,
indicates that the package has an average download count of 35 per day and a Levenshtein
distance to its attack target of 1. Each point in this plot is a typosquatting package. In the
graph of the Levenshtein and the Damerau-Levenshtein distance, it becomes evident that
all the typosquatting packages having a distance higher than 2 to their attack targets have

13The source code is provided in the appendix
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a download rate close to zero. For the scatter plot of the Jaro-Winkler distance, it can
be observed that most of the typosquatting packages with a significantly higher download
rate are found starting with a similarity value of 0.95. Though there are some outliers
before the value of 0.95, too, and packages whose download rate is less significant but not
equal to 0. Particularly noticeable are the typosquatting packages, which, according to
the Jaro-Winkler distance, have no similarities at all and thus have a similarity value of
0. This was the case for the typosquatting packages 5rn and 9mz with target packages rn
and mz. The Gestalt-Pattern, on the other hand, has a similar but slightly larger distri-
bution. Still, in contrast to the Jaro-Winkler similarity, no point with a similarity value
of 0 exists. The Modified-Damerau-Levenshtein distance has a similar distribution to the
original Damerau-Levenshtein distance, as well as the Levenshtein distance, except that it
has a higher granularity. In addition, some of the packages that were previously assigned
to distance 2 in the Levenshtein and Damerau-Levenshtein distance are now assigned to
a distance of 0.5. The scattering of packages with higher download rates has thus been
slightly reduced, but the scattering of typosquatting packages with lower download rates
has been increased.

Figure 30: Downloads per day based on similarity

In this regard, Figure 30 provides some initial indications of how the thresholds for
the various metrics could be chosen. According to the table in Figure 30, it is advis-
able to choose a Levenshtein and Damerau-Levenshtein distance of 2 since these cover all
typosquatting packages that are downloaded at least once a day. For the Jaro-Winkler dis-
tance, there are three possible approaches for the selection; either one selects the threshold
value to cover all typosquatting packages that are not considered outliers. In the second
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option, one selects the threshold starting from the point where a typosquatting package
is downloaded significantly more often than less effective typosquatting packages. With
the first approach, the threshold would be about 0.75, while the second approach results
in a threshold of about 0.82. Using the same approach for the Gestalt pattern algorithm,
a threshold of about 0.7 would be used for the first approach, while a threshold of 0.75
would be chosen for the second approach. For the Modified-Damerau-Levenshtein dis-
tance, either a distance of 1 applies if all significant packages are to be included or 0.5
if the typosquatting package, which has a download rate of 2 at a distance of 1, is to be
considered an outlier. The third possible approach is explained in the following paragraph
by utilizing the Figure 31.
The data have been observed from a different perspective using a pie chart to analyze

further how much of the downloads are covered by each distance class. Therefore the pie
charts in Figure 31 depict the distribution of the download rate depending on the simi-
larities between the typosquatting packages and their attack targets. In the Levenshtein
distance, for example, it can be seen that all typosquatting packages with a Levenshtein
distance of 1 account for about 50% of the total downloads. For the Levenshtein distance
of 2, about 90% of all downloads are covered. The Damerau-Levenshtein distance also
covers about 90% of the downloads starting from a distance of 2. Compared to the Leven-
shtein distance, a Damerau-Levenshtein distance of 1 covers significantly more downloads
than the most strict Levenshtein distance threshold. For the pie charts of the Jaro-Winkler
distance and the Gestalt-Pattern algorithm, the threshold was chosen to cover about 90%
of the downloads, following the minimum requirements set by the previous pie charts.
Thus the threshold for such coverage is set to 0.89 for the Jaro-Winkler distance and 0.8
for the Gestalt-Pattern algorithm. The distribution of the Modified-Damerau-Levenshtein
distance covers 90% of all downloads from a distance of up to 1.5. As with the original
Damerau-Levenshtein distance, most downloads are covered by the smallest distance of
0.5.
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Figure 31: Distribution of downloads based on similarity

Upon further inspection, the packages with the lowest number of downloads have, on
most days, the same number of downloads. For example, consider the seven libraries
with the lowest downloads: url-w.parse, vue-style-gloder, xpostcss-loadsr, follow-rdeirects,
traecr, vniyl-fs, wcebpack-bunde-analyzer, wnode-acche and xbcrypt-nohejs. For some of
the seven typosquatting packages, the chances of a typo are relatively low. For instance,
to make a typo in the library node-cache, one must accidentally press the key for ”w” and
transpose the letters ”a” and ”c” to install the typosquatting package wnode-acche. These
two keys are not remotely adjacent to their neighboring letters. For further analysis, the
download history of the typosquatting packages has been investigated. The download
history can be seen in Figure 32. Except for very few differences, all seven have an almost
identical download history, indicated by the overlapping of the functions (laying on top
of each other). The probability that one needs all seven libraries and makes, in addition,
the same typing errors is very unlikely. One possible explanation for the downloads that
still appear in the data could be that a mirror, a copy of a repository, made copies and
downloaded the packages at the time of observation, as shown in Figure 32. Alternatively,
it is possible that a security researcher downloaded the packages for research purposes.
Therefore it was checked for each day whether all packages had been downloaded on that
specific day. If that was the case, the download value represented by most of the packages
was taken. For instance, on 23rd October 2022, all packages were downloaded twice,
except for one, which was downloaded thrice. Therefore the noise value for that specific
day was set to 2. This procedure was performed for each day until 30th January 2023.
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The sum of the noise values for each day was then summed and divided by the number of
days since all packages were available.

Figure 32: Typosquatting package download noise

The result of this normalization can be seen in the adjusted pie chart in Figure 33. 80%
of all downloads are now caused by typosquatting packages with a minimum Damerau-
Levenshtein distance of 1 to their attack target instead of the previous 67%. For the
Levenshtein distance, the download rate covered by the lowest distance increased from
47% to 59%, and for the modified version of the Damerau-Levenshtein distance, from
65.06% to 79.85%. The limits of the Jaro-Winkler and the Gestalt-Pattern algorithm have
thus been adjusted accordingly and now only need to meet the 80% coverage requirement
provided by the previous distances. They do so at a threshold of 0.95 for the Jaro-Winkler
similarity and 0.86 for the Gestalt-Pattern algorithm. The threshold values for the various
string metrics are therefore defined as follows:

• Levenshtein: 2
• Damerau-Levenshtein: 1
• Jaro-Winkler: 0.95
• Gestalt-Pattern: 0.86
• Modified Damerau-Levenshtein: 0.5

These values were selected to have equal coverage of 80% of the number of downloads while
minimizing a possible false positive value. Additionally, the targets of the typosquatting
packages have been examined, resulting in the insight that approximately 90% of the
packages targeted the top 1000 most depended upon libraries14.

14https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
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Figure 33: Adjusted distribution of downloads based on similarity

6.2.1. Results

The above insights revealed that about 90% of the typosquatting packages targeted the
most popular libraries. Therefore, the various string metrics were evaluated in terms of
accuracy on the top 5 most popular libraries. The threshold values for the evaluation
were derived from the section above. The five libraries were then tested on the entire
npm ecosystem, and the resulting typosquatting candidates were added to a list. Each ty-
posquatting candidate was then checked to verify whether it was a typosquatting package
confirmed by npm. To determine whether a package name had been used as a typosquat-
ting package in the past, the metadata was utilized. Finally, the set of confirmed cases
was divided by the set of all typosquatting candidates for the respective target. The result
of this process can be seen in Figure 34.
For each string metric, a runtime test has been performed. Figure 35 below displays

a regression of the runtime in seconds depending on the number of comparisons. An
AMD Ryzen 5 5600X 6x 3.70GHz processor and 32 GB RAM were used to perform the
calculations. Additionally, a slightly adjusted version of the Python Modified-Damerau-
Levenshtein has been implemented to improve the runtime. This was done by converting
some aspects of the algorithm, for instance, the types, into C code. However, some aspects
are still written in native Python, e.g., the lookup of neighboring keys.
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Figure 34: Precision of various string metrics in detecting typosquatting packages

Figure 35: Runtime comparison with C code modification

Running the above metrics on the entire npm repository would require 5.29 × 1012

comparisons (2.3 million packages to the power of 2), whereby the symmetry is left out
of the equation for the time being. The required computation time using the hardware
specified above can be seen in Table 9. The values in the table are rounded to the next
whole integer.
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Metric Seconds Days

Levenshtein 4515722 52

Damerau-Levenshtein 8938630 103

Jaro-Winkler 3589921 42

Gestalt-Pattern 150078889 1737

Modified Damerau 880570145 10192

Optimized M-Damerau 206687399 2392

Table 9: Runtime for the whole npm ecosystem

6.2.2. Discussion & Interpretation

The results given in section 6.2.1 are promising. Trivially, it can be assumed that the
stricter the threshold or the criteria chosen, the lower the false positive rate. In contrast,
looser criteria provide for a higher false positive rate. However, stricter criteria may
also increase the false negative rate since the criteria have been chosen so strictly that
not all cases of true typosquatting packages are covered. Figure 29 indicates that only
a tiny fraction of the typosquatting packages appear to be effective. The majority of
typosquatting packages, or nearly 95% of typosquatting packages, are downloaded on
average less than once a day. Therefore only effective typosquatting packages have to be
focused on. This has the advantage of allowing the algorithms and metrics to be better
tailored to the effective typosquatting packages and thus allowing stricter similarity metrics
to be defined to reduce the number of false positives.
Suppose one selects the criteria in such a way, as indicated in the section 6.2, and

applies these to the five most popular libraries. In that case, one receives the results from
Figure 34. It can be seen that the metric, which performed almost everywhere poorest,
is the Levenshtein distance. This result also mirrors the experiences perceived in the
literature [47]. The Jaro-Winkler and Gestalt-Pattern metrics, as well as the Damerau-
Levenshtein distance, performed much better than the Levenshtein distance and achieved
similar results across all packages, with a few exceptions. The differences between the
three string metrics are about 10-15%. The modified Damerau-Levenshtein distance, on
the other hand, achieved significantly better results for all packages. Depending on the
package, an increase of 20-50% percent could be achieved.
However, not all approaches are feasible due to their accuracy and runtime. The modi-

fied version of the Damerau-Levenshtein distance, for instance, performs the worst in terms
of runtime and takes almost three times as long for the same amount of comparisons as the
Gestalt-Pattern algorithm. There are several reasons for the higher runtime. The most
obvious reason is that the modified version of the Damerau-Levenshtein distance is written
in pure Python, while the other metrics are partially based on C implementations. If one
transfers some simple elements of the original algorithm into C, the performance increases
by approximately 300%, making the runtime almost equal to that of the Gestalt-Pattern
algorithm. This increase and the various string metrics’ runtime can be observed in Figure
35 or in Table 9. Further optimization possibilities would be using an adjacent matrix to
represent neighboring keys instead of a dictionary of lists. Suppose one maximized the
performance of this presented metric. In that case, one would likely achieve a runtime
equivalent to the original Damerau-Levenshtein distance.
As one can see in Table 9, even for the fastest algorithm of the five presented here,

a minimum runtime of 40 days is required to examine the entire npm ecosystem for all
typosquatting candidates. A runtime that is deemed acceptable, but as discussed earlier,
it results in a significantly higher number of false positives. There are some possibilities to
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reduce the runtime of the more accurate string metrics. The first would be to parallelize
the algorithm. The parallelization can be realized by splitting the set of all packages
into 𝑛 subsets and running them on 𝑛 different systems. This would reduce the runtime
by 𝑛 times. One must also consider that this examination must be performed only once
on all packages. After this, only new packages have to be examined with this method.
The second approach is based on the knowledge that about 90% of the typosquatting
packages in the collected dataset choose the 1000 most popular packages as a target.
Hence, one would reduce the number of comparisons from 5.29 × 1012 to 2.3 × 109. The
runtime for such an approach can be seen in Table 10. Alternatively, one could use the
Modified-Damerau-Levenshtein distance to prohibit packages that have a distance of 0.5
from already existing packages. However, there is one crucial disadvantage of the Modified-
Damerau-Levenshtein distance. Due to the modifications, it loses its symmetry property.
The cause for this is the different cost values when inserting or removing letters. In the
original version, a cost value of 1 was calculated for both removal and insertion. In the
modified version, the value for removing a letter is always 0.5, and inserting a letter is
calculated dynamically, depending on the position on the keyboard of the letter to be
compared. For instance, in the algorithm, an insertion must be performed to transform
a string from ”rect” to ”react”, but an omission must be performed to transform a string
from ”react” to ”rect”. This issue can be resolved in two ways, either by modifying
the insertion and deletion in such a way that the costs are equal or by the usage of the
symmetry property of iterating through package comparisons. However, the latter solution
would increase the computation time by two.

Metric Seconds Hours

Levenshtein 1963 0.55

Damerau-Levenshtein 3886 1.08

Jaro-Winkler 1561 0.43

Gestalt-Pattern 65252 18.1

Modified Damerau 382857 106.35

Optimized M-Damerau 89864 24.96

Table 10: Estimated runtime for the top 1000 most dependet upon packages

From the sheer size of possible packages to compare with each other, it can be assumed
that the accuracy also suffers under the same conditions. The execution of the algorithm
would therefore lead to a large number of false positives when applied to the entire npm
ecosystem while applying it to the top 1000 libraries yields significantly better results.
Thus, the hypothesis as to whether it is possible to find and mitigate typosquatting pack-
ages at the package manager level can be answered with a conditional ”yes”. In order for
the method to be efficient, one could apply them to a certain set of packages, the most
popular ones. Therefore, this option is ideal since 90% of the analyzed typosquatting
packages were found to be targeting the top 1000 most popular packages. Applying the
method to the entire npm ecosystem would result in a prohibitively high runtime and
an unmanageable number of false positives, rendering it impractical and meaningless for
analysis. Another approach would be using the Modified-Damerau-Levenshtein distance
as a prevention measure; packages with a distance of 0.5 from another package could be
prohibited using the Modified-Damerau-Levenshtein distance. As of now, the algorithm of
the Modified-Damerau-Levenshtein distance would take approximately 90 seconds, while
the Levenshtein would take 2 seconds, to compare one package to all other packages. Fur-
ther code optimization of the Modified-Damerau-Levenshtein may significantly decrease
the runtime, but not faster than the Levenshtein distance. Nevertheless, the methods
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mentioned here are only one of the first steps to detecting typosquatting packages. This
part has only dealt with the detection of typosquatting candidates. The next chapter will
present a method that detects whether a typosquatting candidate is also a typosquatting
package.
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6.3. Detection of Malicious Packages

After searching for suitable typosquatting candidates using string metrics, these candidates
must be examined for malicious code to categorize them as typosquatting packages. The
intention of maliciousness is evident if the primary goal of a package can be assigned to
one of the primary goal groups mentioned in section 3.2. Tools like modules, functions, or
libraries are usually used to achieve these primary goals, which was additionally confirmed
in the mentioned pieces of literature [41], [43], [45]. Therefore, the following hypothesis
will be proposed: ”The intention of a package can be identified by the combination of the
libraries used and several other characteristics”. The other characteristics are namely:

• Usage of the eval function
• Usage of script hooks
• Presence of IP or URL addresses
• Existence of binary or script files

These characteristics were extracted from the literatures mentioned in chapter 4 for in-
stance [43], [45], to name a few. In order to test the hypothesis, 396 typosquatting packages
were analyzed manually for the libraries used and their characteristics.
To compare the source code of a typosquatting package and the target attack code, a

delta, similar to a Git diff15, was initially generated between the typosquatting package’s
source code and the attack target’s source code. Subsequently, newly introduced libraries
and modules have been added to a set from the delta of the source codes. Thus iteratively,
a set of libraries was formed. Additionally, the typosquatting packages were checked for
the characteristics mentioned above. Subsequently, for each typosquatting package, a data
record was created, in which the set of the used libraries was mapped into a boolean feature
vector. A small sample can be seen in Table 11. A total of 15 features were collected
for each of the typosquatting packages. If a typosquatting package was obfuscated, it
was deobfuscated and included in the dataset; if this was not possible, the respective
package was discarded. Though obfuscated code may not necessarily be malicious, the
use of obfuscated code goes in itself contrary to the nature of OSS. Additionally, as a
stakeholder, it would be reasonable to prevent the introduction of obfuscated code due
to the higher risks associated with it. Finally, these typosquatting packages were labeled
as malicious. The attack targets of the typosquatting packages were used as datasets for
benign packages. The same features as for the typosquatting packages were used and
added. A total of 396 datasets were collected as a sample for malicious packages and 211
for benign packages. The two datasets were combined. Furthermore, from these datasets,
a training dataset and a test dataset were created for the Decision Tree. The ratio of
training data to test data was set to 80:20, a ratio that is often used for splitting [56].

Table 11: Small sample of feature dataset

For the creation of a Decision Tree as well as the Random Forest, the Python library
scikit-learn has been used. For the hyperparameters, the default values have been taken.
However, according to the paper [57], the difference between the usage of Entropy or Gini
coefficients is diminishing; therefore, the Gini coefficient has been used as the impurity
measure of choice. The usage of a Random Forest reduces overfitting and provides a more
robust approach than the usage of a Decision Tree [28]. Both models were trained on
80% of the dataset and tested on 20% of the dataset. Additionally, during the training of
the Random Forest, multiple Decision Trees were generated using bootstrapping, where
each tree is trained on a random subset of the training data. The out-of-bag sets are then

15Git diff is a command that shows the differences between two sets of code
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used to evaluate the performance of each tree on the samples not included in its bootstrap
sample. This helps to estimate the generalization performance of the model. Additionally,
the whole Random Forest has been evaluated on the test dataset not included during the
training phase.
The model was also tested on a dataset from the Backstabber’s Knife Collection [35] to

check if the model was not simply tailored to the internal dataset. For this purpose, the
model, which was trained using the data collected for this thesis, was tested with data
from external sources. From the 3124 npm malicious packages, about 350 packages were
randomly selected, and their features were extracted and fed in as a dataset. From these,
23 were removed due to duplicates. The choice of sample size is derived from the literature
[58] and is based on the population of 3124 malicious packages, with a confidence interval
of 95%. One has to mention that the information extracted from the malicious packages
provided by the Backstabber’s Knife Collection was done using a script, and no manual
inspections were performed.

6.3.1. Results

The Decision Tree was able to classify 95.86% of the test data from the internal dataset
correctly. The exact results are shown in Table 12, describing the performance of the
binary classification model, in this case, that of the Decision Tree. The terms Malicious
and Benign are the classes of the data entries. For the evaluation of each class, a precision,
a recall, and an F1 score can be specified. In Table 12, a total of 121 records have been
tested, with 40 being true benign and 81 being true malicious. The precision for the class
Malicious is 0.97, meaning that if the Decision Tree classifies a package as Malicious, it is
correct about 97% of the time. The recall value of the class Malicious with a value of 0.96,
on the other hand, describes that the Decision Tree could identify 96% of all packages
that were true Malicious, that is, 96% of all typosquatting packages were thus identified.
The model’s accuracy is 96%, meaning that if a classification was performed, the model
was correct 96% of the time. The corresponding Decision Tree can be seen in Figure 36.

Precision Recall f1-Score Support

Benign 0.93 0.95 0.94 40

Malicious 0.97 0.96 0.97 81

Accuracy 0.96 121

Weighted
Avg. 0.96 0.96 0.96 121

Table 12: Classification report for Decision Tree

The Decision Tree shown in Figure 36 has a depth of four and five nodes with six leaves.
The first line of each node contains the condition. The first node’s condition child_process
<= 0.5” can be interpreted as follows: ”Does the package use the module child_process?”,
where a value 0 means False, and a value 1 denotes True. The left path of a node represents
yes, while the right path stands for no. A package is thus passed on from node to node
and, depending on the respective condition in the node, is either passed on via the left or
right path until it can be assigned to a leaf. The last line in a leaf represents the assigned
class.
The accuracy of the Random Forest model, consisting of 1000 Decision Trees, is 97.52%.

As a seed for splitting the test and training dataset, the random state value was left at
0. Consecutively, the exact results can be seen in Table 13. The classification report of
the test performed on the dataset from the Backstabber’s Knife Collection is depicted in
Table 14.
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Figure 36: A Decision Tree instance based on the dataset

Precision Recall f1-Score Support

Benign 0.93 1.0 0.96 40

Malicious 1.0 0.96 0.98 81

Accuracy 0.98 121

Weighted
Avg. 0.98 0.98 0.98 121

Table 13: Classification report for Random Forest

Precision Recall f1-Score Support

Benign 0.77 1.0 0.87 211

Malicious 1.0 0.81 0.90 327

Accuracy 0.88 538

Weighted
Avg. 0.91 0.88 0.89 538

Table 14: Classification report for Random Forest on external data
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6.3.2. Discussion & Interpretation

The methods carried out in section 6.3 show promising results. In evaluating the Decision
Tree, an accuracy of 95.86% was achieved. The evaluation was performed on 121 test
data, of which 40 were benign, and 81 were malicious packages. Of all packages that
were identified as benign, 93% were correctly classified, while of all packages classified as
malicious, 97% were correctly classified as such. On the other hand, in the paper [41], a
precision of 98% was achieved based on their own dataset. The recall value for the class
Benign of the presented Decision Tree is 95% and for the Malicious class 96%, i.e., if a
package is truly harmless, it is recognized as such 95% of the time, and if it is malicious,
it is recognized as such 96% of the time. Thus the recall values are clearly above the recall
value from the literature [41], displayed in Table 4. There, the value is 43%, meaning
that only 43% of all malicious packages from the dataset could be detected as such. The
number of packages evaluated on external datasets is as follows:

• 538 packages were used during the evaluation in this thesis
• The paper [41] used 372 packages during evaluation
• The paper [48] used 114 packages during the evaluation
One problem that was considered in the results is the variability. The model’s accuracy

depends on the data with which it was trained. Since some randomization is involved
in splitting the data into test and training data, one gets different results depending on
which seed one chooses. For example, with the Decision Tree trained in section 6.3, a
random state value of 5 yields better results than a random state value of 0. Therefore,
an extended form of the Decision Tree was used, the Random Forest, which reduces such
variability using bootstrapping and out-of-bag methods. This results in a slightly improved
accuracy and a more robust model, which according to the literature mentioned in section
2.6.3, is less susceptible to overfitting. The performance of the Random Forest model is
demonstrated in Table 13.

In order to check whether overfitting may have occurred, this model was additionally
tested on an external dataset, and its results are presented in Table 14. It can be seen here
that the accuracy has decreased in certain areas. There are several possible reasons for
this. One possible explanation is that the samples collected for this work are biased; for
instance, many samples can originate from the same attacker. As a result, the tests perform
better on the samples collected for this thesis, as they may contain that bias, but perform
worse on external datasets, as the bias may not be present in these datasets. Manual
analysis has indicated that a large proportion of malicious packages can be assigned to
the same attackers. As a result, packages from the same attacker may be more similar
to each other but more different from malicious packages from other attackers. However,
this can be easily fixed by either adding the malicious packages from the Backstabber’s
Knife Collection or other sources to the datasets or by introducing a custom weighting
such that the influence of the malicious packages is normalized. For example, packages
with the same source will only be added once in the dataset. Nevertheless, when testing
an external dataset the proposed model performed better than the model in paper [41], a
higher precision, as well as recall, could be achieved, on a larger dataset.
Another apparent cause is that the datasets from the Backstabbers Knife Collection

were automatically extracted using scripts. This has two possible implications. The first
implication would be an error in the script, but since the script was also re-tested on
the self-collected datasets and the results were compared to the manual analysis, this
error is less likely to occur. The second implication is that automatic feature collection
only works on malicious packages that have not been obfuscated entirely. The reason
for this is that the feature extraction script uses regular expressions. Transforming the
source code into an AST and extracting the modules might result in better performance,
but another solution is needed for highly obfuscated source code. Therefore with highly
obfuscated code, one can hardly recognize the use of libraries, which suggests that they
exhibit characteristics of benign packages. This hypothesis is indicated by the values

58



Typosquatting Attacks and Mitigations

from the classification report presented in Table 14. The precision of the class Benign
and the recall of the class Malicious are conspicuous compared to the other scores. A
Precision value of the class Benign of 0.77 means that 77% of the packages that were
classified as benign were actually benign. Nevertheless, 100% of the malicious packages
that were classified as such were correctly classified. Conversely, only 81% of the malicious
packages were detected. The existence of obfuscated malicious code could explain such a
characteristic in the classifications report.
Thus, the modeling of such machine learning methods was considered under different

aspects, allowing for promising results to be achieved. Regarding the quality of the model,
it was able to significantly outperform the model from the literature [41] in terms of the
evaluation based on internal datasets and external datasets. Particularly in evaluating
external datasets, better results could be achieved in the various metrics, in some cases by
20-50%. Nevertheless, it would be necessary to investigate more closely how the ratio of
malicious packages to benign packages in the test dataset affects the model’s performance.
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7. Conclusion and Future Work

The question of whether differences exist in the attack frequency depending on the package
manager can be answered with a clear yes. Although, the distribution shown in Figure
27 is only an excerpt of the malicious packages that are or were in the various package
managers. The difference in the number of malicious packages depending on package
managers is significant enough to assume that this is not due to a bias of the source
material. The mentioned sources, Sonatype, Phylum, and Snyk, also cover almost all the
package managers examined here. Furthermore, the distribution of the number of attacks
on each package manager is indicated in the paper [35]. The package managers npm
and PyPI are the most frequent attack target. According to the examination performed
on the various package managers, the following four characteristics contribute the most
to the protection of the package manager. According to the correlation matrix, these
are CAPTCHAs, the absence of Install hooks, the use of repositories as the source for the
library in question, and a more complex naming system. Nevertheless, with these findings,
it must be questioned how accurate the correlation matrix is due to the shortcomings
mentioned in section 6.1.2. The conclusion drawn from this investigation is that, among
the mentioned characteristics, only CAPTCHAs can be implemented without encountering
additional issues. Implementing the remaining features leads to problems, which could
cause breaking changes and thus endanger already existing software products. The analysis
presented in section 6.1 can provide valuable insights in the event that a new package
manager is developed. Thus the question of whether one can derive approaches or methods
from less susceptible package managers can be answered with a yes, the realization of such
features for already existing package managers, with a no or not without sizeable additional
expenditure. Therefore, subsequent research in this thesis focused on the detection of
malicious packages, particularly the detection of typosquatting packages.
Different string metrics were compared and evaluated to detect typosquatting candi-

dates. As a result, a new string metric was derived. A modified variant of the Damerau-
Levenshtein distance was implemented. This string metric additionally uses a mapping
of the keyboard to adjust the cost accordingly. It has been shown in this study that
the Modified-Damerau-Levenshtein variant is significantly more accurate than the other
string-matching algorithms examined in this thesis and, thus, more accurate than the
majority of the metrics in the mentioned literature. However, there is still a need for
optimization in terms of runtime. Moreover, this work has shown that applying even the
fastest string-matching algorithm of the five mentioned requires a minimum runtime of
about 40 days to compare all packages from the npm ecosystem (neglecting symmetry).
Instead, one could only apply the string metrics to new packages or the most popular pack-
ages. This solution is supported by the statistical analysis performed in this thesis. For
instance, 90% of the typosquatting packages collected for this thesis targeted the top 1000
libraries with the most dependents. Another finding is that the effectiveness of typosquat-
ting packages with a (Damerau)-Levenshtein distance greater than 2 is approaching 0. In
order to verify that a found typosquatting candidate is a typosquatting package, a De-
cision Tree was trained and used. This approach has been further improved by using a
Random Forest model, which correctly classifies the packages with an accuracy of 98% on
internal datasets and 88% on external datasets. The model can be further optimized by
improving the data basis or performing a hyperparameters adjustment. The question of
whether it is possible to detect typosquatting packages on the package manager level can
be answered with a theoretical yes, whereby it must be said that the presented system
is weak against obfuscated code. Here possibly, the works of literature [59], [60] might
provide more insight. These works of literature were able to identify obfuscated code with
high precision. Alternatively, the proposed approach can be combined with dynamic code
analysis, where the behavior of the malicious packages can be observed instead of inferring
behavior through the source code.
Ultimately, the presented method’s performance must be tested further in the npm

ecosystem. An outlook for further investigations would be applying the presented proce-
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dure to the 1000 most popular libraries and newly uploaded packages and evaluating the
proposed methods in terms of precision. In terms of recall, this is hardly possible for the
npm ecosystem because one has to know all malicious packages located therein. On the
other hand, the method provided could also be tested on the general detection of mali-
cious packages. Hence, based on the aforementioned reasons, the subsequent perspective
is suggested:

• Optimization of runtime performance for the Modified-Damerau-Levenshtein dis-
tance

• Optimization of the classifier by providing better datasets and hyperparameter ad-
justment

• Extend the proposed approach by adding methods to detect obfuscated code or use
methods resistant to obfuscated code

• Testing the proposed methods on the most popular packages (for typosquatting
packages and malicious packages in general)

In conclusion, the analysis in this thesis suggests that while some mitigation measures
may be challenging to implement, alternative approaches show promising results. By
incorporating these approaches, a 20-50% increase in precision in detecting typosquat-
ting candidates was achieved, surpassing all other string metrics tested in all five cases.
Additionally, an accuracy of 88% was achieved using a Random Forest model without
hyperparameter optimization evaluated on an unknown external data set. On average,
the model’s precision and recall are 91% and 88%, respectively, with potential for further
improvement.
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A. Appendix

A.1. Package Manager Properties

Dependent variables with higher values or ranking indicate a higher vulnerability. For
instance, a package manager ranked eight is more frequently attacked than a package
manager of rank three and, therefore, is more vulnerable.

Property Domain

Malicious Packages An integer representing the number of mali-
cious packages

Malicious Package
Rank

An integer representing the rank by the num-
ber of malicious packages

Ratio A percentage representing the ratio between
malicious packages and all packages

Ratio rank An integer representing the rank by the ratio
of malicious packages

Table A.1: Package Manager dependent variables

Instances of a property or independent variable with higher values or ranking indicate
less beneficial for the package manager in terms of security, while smaller values indicate
more beneficial measures. For instance for the property ”Captcha” two instances exists.
Either ”yes” or ”no”. ”yes” receives the smaller value due to being more beneficial for
a package manager in terms of security than ”no” CAPTCHAs. The instances listed in
”Domain” are ordered from most beneficial to least beneficial.

Property Domain

Namespace system ”group and name”, ”group (optional) and
name”, ”name”

Install Hooks ”no”, ”workaround” and ”partly”, ”native”

CAPTCHA ”yes”, ”no”

Mandatory VCS ”yes”, ”no”

Install through CLI ”possible, but unusual”, ”yes”

Code Scan ”yes”, ”no”

Popularity Percentage

Publishing complexity ”complex”, ”advanced”, ”simple”

Table A.2: Package Manager independent variables
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A.2. Malicious Package Feature

The following features were extracted from the packages metadata and source code. The
value for each feature is a boolean denoting the existence or absence of that feature.

Features Notes

axios Library

child_process Built-in module

crypto Built-in module

dns Built-in module

entry_through_script Whether the package uses ”Hook Install”
scripts

eval Whether the package uses the eval function

fs Built-in module

has_bash_file Whether files like ”.sh”, ”.bash”, ”.bat” and
”.zsh” are contained in the package

has_ip_or_address Wether an IP or URL address could be found
in the source codes

https_or_http use of the libraries http or https

node-fetch Library

node-serialize Library

os Built-in module

path Built-in module

querystring Built-in module

Table A.3: Features extracted for malicious code detection dataset
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A.3. Core Implementations
Keyboard Mapping

1 en_layout = {
2 "1": ["Q", "2"],
3 "2": ["1", "3", "Q", "W"],
4 "3": ["2", "4", "W", "E"],
5 "4": ["3", "5", "E", "R"],
6 "5": ["4", "6", "R", "T"],
7 "6": ["5", "7", "T", "Y"],
8 "7": ["6", "8", "Y", "U"],
9 "8": ["7", "9", "U", "I"],

10 "9": ["8", "0", "I", "O"],
11 "0": ["9", "-", "O", "P"],
12
13 "Q": ["1", "2", "A", "W"],
14 "W": ["2", "3", "Q", "E", "A", "S"],
15 "E": ["3", "4", "W", "R", "S", "D"],
16 "R": ["4", "5", "E", "T", "D", "F"],
17 "T": ["5", "6", "R", "Y", "F", "G"],
18 "Y": ["6", "7", "T", "U", "G", "H"],
19 "U": ["7", "8", "Y", "I", "H", "J"],
20 "I": ["8", "9", "U", "O", "J", "K"],
21 "O": ["9", "0", "I", "P", "K", "L"],
22 "P": ["0", "-", "O", "L"],
23
24 "A": ["Q", "W", "S", "Z"],
25 "S": ["W", "E", "A", "D", "Z", "X"],
26 "D": ["E", "R", "S", "F", "X", "C"],
27 "F": ["R", "T", "D", "G", "C", "V"],
28 "G": ["T", "Y", "F", "H", "V", "B"],
29 "H": ["Y", "U", "G", "J", "B", "N"],
30 "J": ["U", "I", "H", "K", "N", "M"],
31 "K": ["I", "O", "J", "L", "M"],
32 "L": ["O", "P", "K", "."],
33
34 "Z": ["A", "S", "X"],
35 "X": ["Z", "S", "D", "C"],
36 "C": ["X", "D", "F", "V"],
37 "V": ["C", "F", "G", "B"],
38 "B": ["V", "G", "H", "N"],
39 "N": ["B", "H", "J", "M"],
40 "M": ["N", "J", "K"],
41 "-": ["0", "P", "_"],
42 "_": ["-"],
43 ".": ["L"],
44 "@": [],
45 "/": [],
46 "!": [],
47 "(": [],
48 ")": [],
49 "~": [],
50 "'": [],
51 "*": []
52 }
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Algorithm for Modified-Damerau-Levenshtein
1 def modified_damerau_levenshtein(s1, s2, keyboard_map):
2 js_cost = 0
3 if ".js" in s1 or ".js" in s2:
4 s1 = s1.replace(".js", "")
5 s2 = s2.replace(".js", "")
6 js_cost = 0.5
7
8 rows = len(s1) + 1
9 cols = len(s2) + 1

10 dist = [[0 for x in range(cols)] for y in range(rows)]
11 for i in range(1, rows):
12 dist[i][0] = i
13 for i in range(1, cols):
14 dist[0][i] = i
15 for col in range(1, cols):
16 for row in range(1, rows):
17 if s1[row - 1] == s2[col - 1]:
18 cost = 0
19 else:
20 cost = 0.5 if s1[row - 1].upper() in keyboard_map[s2[

col - 1].upper()] else 2
21 dist[row][col] = min(dist[row - 1][col] + 0.5,
22 dist[row][col - 1] + cost,
23 dist[row - 1][col - 1] + cost)
24 if row > 1 and col > 1 and s1[row - 1] == s2[col - 2] and

s1[row - 2] == s2[col - 1]:
25 dist[row][col] = min(dist[row][col], dist[row - 2][

col - 2] + 0.5)
26
27 return dist[rows - 1][cols - 1] + js_cost
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Decision Tree Classifier
1 import graphviz
2 import pandas as pd
3
4 from sklearn.metrics import classification_report
5 from sklearn.model_selection import train_test_split
6 from sklearn.tree import DecisionTreeClassifier
7
8 # Loading Typosquatting Target Data
9 target_packages = pd.read_csv('./data/target_package_data.csv')

10 target_packages.drop("modules_used", axis=1, inplace=True)
11 target_packages["Malicious"] = False
12
13 # Loading Typosquatting Packages Data
14 typo_packages = pd.read_csv("./data/typosquatting_data.csv")
15 typo_packages.drop(["dependency_imitation_injection", "

uses_obfuscation"], axis=1, inplace=True)
16 typo_packages["Malicious"] = True
17
18 # Preparing internal Data
19 internal_data = pd.concat([typo_packages , target_packages], axis=0).

sort_index(axis=1)
20 internal_data.dropna(inplace=True)
21 internal_data_X = internal_data.drop(["Malicious", "package_name"],

axis=1)
22 internal_data_Y = internal_data["Malicious"]
23
24 # Split Data into Training and Test Data 80:20
25 X_train, X_test, Y_train, Y_test = train_test_split(internal_data_X ,

internal_data_Y , test_size=0.2, random_state=0)
26
27 # Generate Decision Tree Model based on internal Training Data
28 clf = DecisionTreeClassifier()
29 clf.fit(X_train, Y_train)
30
31 # Evaluate model on internal Test Data
32 accuracy = clf.score(X_test, Y_test)
33 y_pred = clf.predict(X_test)
34 print("Accuracy:", accuracy)
35 print(classification_report(Y_test, y_pred))
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Random Forest Classifier
1 import graphviz
2 import pandas as pd
3
4 from sklearn.ensemble import RandomForestClassifier
5 from sklearn.metrics import classification_report
6 from sklearn.model_selection import train_test_split
7
8 # Loading Typosquatting Target Data
9 target_packages = pd.read_csv('./data/target_package_data.csv')

10 target_packages.drop("modules_used", axis=1, inplace=True)
11 target_packages["Malicious"] = False
12
13 # Loading Typosquatting Packages Data
14 typo_packages = pd.read_csv("./data/typosquatting_data.csv")
15 typo_packages.drop(["dependency_imitation_injection", "

uses_obfuscation"], axis=1, inplace=True)
16 typo_packages["Malicious"] = True
17
18 # Loading Backstabbers Collection Data
19 backstabber_packages = pd.read_csv("./data/backstabber_data.csv")
20 backstabber_packages.drop("modules_used", axis=1, inplace=True)
21 backstabber_packages["Malicious"] = True
22
23 # Preparing internal Data
24 internal_data = pd.concat([typo_packages , target_packages], axis=0).

sort_index(axis=1)
25 internal_data.dropna(inplace=True)
26 internal_data_X = internal_data.drop(["Malicious", "package_name"],

axis=1)
27 internal_data_Y = internal_data["Malicious"]
28
29 # Preparing external Data
30 external_data = pd.concat([backstabber_packages , target_packages],

axis=0).sort_index(axis=1)
31 external_data.dropna(inplace=True)
32 external_data_X = external_data.drop(["Malicious", "package_name"],

axis=1)
33 external_data_Y = external_data["Malicious"]
34
35 # Split Data into Training and Test Data
36 X_train, X_test, Y_train, Y_test = train_test_split(internal_data_X ,

internal_data_Y , test_size=0.2, random_state=0)
37
38 # Generate Random Forest Model on internal Training Data
39 rfc = RandomForestClassifier(n_estimators=1000, random_state=0,

oob_score=True, bootstrap=True)
40 rfc.fit(X_train, Y_train)
41
42 # Evaluate model on internal Test Data
43 accuracy = rfc.score(X_test, Y_test)
44 y_pred = rfc.predict(X_test)
45 print("Accuracy:", accuracy)
46 print(classification_report(Y_test, y_pred))
47
48 # Evaluate Random Forest Model on external Data
49 y_pred = rfc.predict(external_data_X)
50 accuracy = rfc.score(external_data_X , external_data_Y)
51 print(accuracy)
52 print(classification_report(external_data_Y , y_pred))
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