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Abstract

Neuro-symbolic agents rely on logical rules to infer their actions, which often requires
knowledge about how objects are related to each other. Understanding concepts such
as left of or nearby is therefore essential for solving abstract tasks. In existing systems,
such relations are typically defined by human experts, which limits extensibility since the
meaning of a concept can vary across different environments. To address this limitation,
we introduce a novel framework that grounds relational concepts through interaction
with the environment. We further utilize large language models to provide additional
weak supervision and to complement sparse reward signals. Empirical evaluations on
the ATARI environments Kangaroo and Seaquest demonstrate that our agents match,
and in some cases exceed, the performance of logic agents with hand-crafted relational
concepts. Furthermore, our framework effectively mitigates concept misalignment in
underdetermined environments.




Zusammenfassung

Neuro-symbolische Agenten verwenden logische Regeln, um ihre Handlungen abzuleiten,
was héufig Wissen dariiber erfordert, wie Objekte zueinander in Beziehung stehen. Das
Verstdndnis von Konzepten wie links von oder in der Ndhe von ist daher unerlasslich um
abstrakte Aufgaben zu 16sen. In bestehenden Systemen werden solche Beziehungen typi-
scherweise von menschlichen Experten definiert, was die Erweiterbarkeit einschrankt, da
die Bedeutung eines Konzepts je nach Umgebung variieren kann. Um diese Einschrankung
zu liberwinden, stellen wir ein neuartiges System vor, das relationale Konzepte durch In-
teraktion mit der Umgebung erlernt. Dariiber hinaus nutzen wir grolse Sprachmodelle, um
zusitzliche schwache Uberwachung bereitzustellen und so seltene Belohnungssignale zu
erganzen. Empirische Auswertungen fiir die ATARI-Umgebungen Kangaroo und Seaquest
zeigen, dass unsere Agenten die Leistung von logischen Agenten mit manuell entworfenen
Relationen erreichen und in einigen Féllen iibertreffen. Dariiber hinaus mindert unser
System effektiv Konzept-Fehlausrichtungen in unterbestimmten Umgebungen.
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1. Introduction

Deep Reinforcement Learning (RL) has seen a lot of advances in the recent years which
pushed forward the deployment of agents in highly critical areas like autonomous driving
and robotics. Despite their successes in domain-specific tasks, they often lack essential
planning and reasoning capabilities. This limits their ability to solve novel tasks and to
adapt to environments they have never been exposed to before — which humans, on the
other hand, excel at.

Studies in the fields of philosophy and cognitive science suggest that humans can generalize
so well because they perceive the world in terms of concepts (Bruner et al., 1956; Rosch,
1973; Mao et al., 2025). A concept can be thought of as an abstract attribute or relation
that a set of things can have in common (Archer, 1966). For example, objects might be
described by their color, shape and how they are positioned relative to other objects.

Inspired by that, neuro-symbolic agents have emerged that operate on conceptual rep-
resentations rather than raw sensory input, which is promising for a variety of reasons.
Firstly, concepts capture relevant information about an environment at a higher level of
abstraction. This facilitates learning policies that are less sensitive to noise and hence
more robust to extraneous changes. Secondly, it allows agents to reason over objects in
the environment by expressing their policy as logical rules. For instance, one such rule
could enforce the agent to move right if it is left of a ladder, using concepts like "left of”
and ”is ladder”. This further makes the policy more transparent and interpretable because
decisions can be justified in a logical and hence human-understandable way, as opposed
to purely neural agents whose policies are opaque. Moreover, the agent can be better
controlled and safeguarded because humans can induce bias or restrict its behavior by
interacting with its logical rules.

All these potential advantages drive interest in building neuro-symbolic agents, but it
remains an open research question how abstract concepts can be grounded to specific
objects in the environment. As an example, recall the agent that is instructed to move
right when being left of a ladder. In order to satisfy this rule, the agent must learn a




function that maps the concepts ”is ladder” and ”left of” to the respective objects in the
scene, i.e., to all ladders and all objects right of the agent.

This challenge has been addressed in supervised domains like Visual Question Answering
(Mao et al., 2019) and robotic manipulation (Hsu et al., 2023; Mao et al., 2025). For RL
tasks, however, concept grounding remains underexplored and is commonly circumvented
by implementing suitable grounding functions manually (Jiang et al., 2019; Vouros, 2022;
Shindo et al., 2024). While this can be feasible in simple environments, it becomes
impractical in more complex ones, especially for concepts that represent relations between
multiple objects.

We therefore argue that neuro-symbolic agents must ultimately be able to ground relational
concepts by interacting with their environment. To that end, our work contributes as
follows!:

(1) We present a framework for learning neuro-symbolic agents that incorporate logical
reasoning over relational concepts, whose grounding functions are learned through
experience and weak supervision provided by large language models.

(2) We identify and investigate key challenges of learning relational concepts without
strong supervision.

(3) We extensively evaluate our framework on two ATARI environments: Kangaroo and
Seaquest.

This thesis is structured as follows: First, we will provide necessary background on
reinforcement learning in general and, more specifically, on concept grounding for neuro-
symbolic systems in Chapter 2. Then, we give an overview of related work in Chapter 3.
Next, we present our framework in Chapter 4 and show experimental results thereafter
in Chapter 5. We end the thesis by discussing and analyzing some of the key insights in
Chapter 6 and give a conclusion in Chapter 7.

'We provide the full code for this work at: https://github.com/ml-research/blendrl-dev/
tree/valuation_synthesis
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2. Foundations

In the subsequent sections, we provide the foundations for training neuro-symbolic agents.
First, we introduce common RL algorithms and methods used to learn policies from
experience in Section 2.1. We then investigate how relational concepts can be incorporated
by the agent to apply logical reasoning in Section 2.2.

2.1. Deep Reinforcement Learning

In Deep Reinforcement Learning, the goal is to learn a policy that, given the current state
of an agent, returns the next action that maximizes the overall reward of the agent. The
problem is modeled as a Markov decision process (MDP), M = (S, A, P, R,~), where in
each timestep ¢, the agent is in state s; € S, takes action a; € A and transitions to the next
state s;1 with probability P(s¢11 | s¢, a;) while receiving a reward r; = R(sy, at, St4+1)-
The objective of the agent is to learn a stochastic policy my(a; | s¢) with parameters 0 that
maximizes the discounted cumulative reward (also called return)

T
J(0) = Eq, [Z vtrt] 2.1)
t=0

where v € [0, 1] is the discount factor and T' € Ny is the length of the episode. We will
briefly explore common methods in RL to find such a policy in the following.

2.1.1. Policy-Gradient Methods

Policy-gradient methods aim to learn the policy directly by maximizing the expected
return J(6) through gradient ascent. As the optimal mapping from states to actions is
unknown, policy-gradient methods instead define estimates ¥; € R of how good a policy




was in each step of the observed episode. The general form of the policy gradient then
becomes

T

Vo (0) = Egsayem, | > Vologmg(ar | s1)¥, (2.2)
=0

Therefore, policy-gradient methods increase the likelihood of actions a; that are positively
scored according to ¥;.

The first such method was REINFORCE (Williams, 1992), which samples sequences of
states and actions according to the current policy and then updates the policy parameters
f based on the collected rewards. As it does not explore all possible paths in the MDP
but rather samples from it, REINFORCE can be considered a Monte-Carlo method. For
each timestep ¢, it computes the remaining return, J; (also called Monte-Carlo return),
and uses it as the estimate ¥y, i.e.,

T—t
Uy=Jy =Y iy (2.3)
=0

In practice, this approach is rather slow and unstable because the return can greatly vary
between different episodes, leading to noisy gradients and hence erratic policy updates.

2.1.2. Value-Based Methods

Value-based methods, on the other hand, attempt to find an optimal policy 7 that max-
imizes the action-value function Q™(s,a) of the MDP M. The action-value function
computes the quality of action « in state s, i.e., the future return that is expected when
taking action « in state s and following the policy onward:

Q" (s,a) = Z P(s"| s,a) [R(s,a,s") + V()] 2.4

s'eS

Here, V™ denotes the value function and represents the overall expected return of the
policy when starting in state s:

VT(s)=> m(al|s)Q(s,a) (2.5)

acA
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Intuitively, a policy 7* is optimal if, for any state s, there does not exist another policy
with a higher Q-value:

Q™ (s,a) = max Q" (s,m(s)) (2.6)

For ease of notation, we henceforth define Q* = Q™ . Vice versa, if the maximum Q-values
are known, the optimal policy 7* can be implicitly defined as

7 (s) = argmax Q" (s, a) 2.7)
acA

It is possible to retrieve Q* for a MDP with bounded rewards and finite states and actions
through dynamic programming (DP), however, it requires the reward function R and
the transition probabilities P to be known in advance, making DP impracticable in an RL
environment. In 1989, Watkins thus introduced Q-Learning, an algorithm that converges
to the optimal Q*, starting from arbitrarily initialized values Qg (s, a). With each step that
the agent transitions from state s to s’ by performing action a, the corresponding @Q-values
get updated according to

Qn(s,a) « (1 —ay) - Qun_1(s,a) +an - |R(s,a,s’) + 7y max Qn-1(s',d") (2.8)

where «,, € [0, 1) is the learning rate.

Although this iterative update scheme guarantees that Q),,(s,a) — Q*(s,a) as n — oo,
()-Learning is intractable for most environments, because complexity increases with |S]|
and |.A| and convergence only holds if the agent observes infinitely many episodes for
each starting state and action (Watkins et al., 1992).

Temporal Difference (TD) learning is another value-based method for learning the value
function V™ of a fixed policy 7 (Sutton, 1988). We note that TD learning itself cannot be
used to improve a policy, but we still present it here as its concepts are used in state-of-the-
art RL algorithms that we will introduce later. TD learning estimates the future value ng)
of a state s; based on the total discounted rewards received in the next n € Ny steps and
bootstraps the value for all remaining steps of the episode using the current estimate for

the last state s;4,:

n—1
ng) = (Z "yiTt_H‘) + ’}’nVﬂ(SH_n) (2.9)
1=0

1



It then updates V™ according to
V™ (s1) < V™(s1) + ad™ (2.10)

where o € (0, 1] is the learning rate and 5§") is the so-called n-step TD residual

5™ =G —v(sy) (2.11)

Note how the hyperparameter n can control the trade-off between bias and variance: If
n = 1, only immediate rewards are considered, leading to low variance but high bias. Vice
versa, if n = T, the update step GET) becomes equivalent to the Monte-Carlo return in

REINFORCE (Eq. 2.3), which has high variance but low bias.

2.1.3. Advantage Actor-Critic

Both, policy-gradient and value-based methods, have practical limitations that make them
inapplicable in many RL environments. To overcome these limitations, most RL tasks today
are learned using so-called actor-critic (AC) methods, which combine both approaches.
They consist of two components: an actor that is equivalent to the parametric policy 7y
used in policy-gradient methods, and a critic that approximates the value (Eq. 2.5) or
action-value function (Eq. 2.4), respectively.

The purpose of the critic is to guide the actor by providing feedback about the actions
that the actor takes. For instance, assume the critic properly approximates Q™ by a
differentiable function Q4(s, a) with parameters ¢. The predicted Q-values can then be
used as the policy gradient ¥, = Q4(s¢, a;) from Eq. (2.2).

Advantage actor-critic (A2C) methods further reduce the variance of ¥, by learning an
approximation A of the following advantage function:

A" (s,a) = Q™ (s,a) — VT(s) (2.12)

It quantifies how much better an action « is compared to sampling a random action
according to the distribution (- | s). However, this increases complexity, because it
requires learning two estimators V;, and @) for both, the value and action-value function.
In practice, just a single value estimator V; is used to approximate the advantage function
instead.

12



One example of this is the n-step TD residual 6t(n) (Eq. 2.11) which already provides an
unbiased estimation of the advantage (Mnih et al., 2016) and therefore is a common
choice in current RL algorithms. While the choice of n can balance bias and variance to a
certain extent, a fixed value for n is not necessarily equally appropriate for all episodes.
For instance, a smaller n might be a better choice for episodes in which rewards occur
early or more frequently. Vice versa, if rewards are greatly delayed, increasing n is more
favorable.

To better adapt to the dynamics of different episodes and still balance bias and variance,
multiple such estimates can be combined. This is the core idea of generalized advantage
estimation (GAE) (Schulman et al., 2018), which effectively blends the TD residuals of all
subsequent timesteps using an exponential decay factor A € [0, 1], and is formally defined
as

T
AtGAE(%)\) _ Z (7)\)15;132 (2.13)
=0

Note that this estimate decomposes into the 1-step TD residual for A = 0 and the 7-step
TD residual for A = 1.

By choosing ¥; = fl? AE(%’\), the actor can be learned more efficiently compared to

standalone policy-gradient methods like REINFORCE due to the reduced variance and bias.
Albeit this approach might not converge to a global optimum as guaranteed by value-based
methods like (Q-Learning, it is tractable and converges to a policy that is locally optimal,
as proven in (Sutton et al., 1999).

The critic V is learned alongside the actor by minimizing the mean squared error (also
called value function loss) between its predictions and target values V¢ using gradient
descent:

LYF(¢) = Egumy {(Vqs(St) - Vtarg(St»Q] (2.14)

While any estimate for V™ such as the Monte-Carlo return can be used as target, a natural
choice is to reuse the advantage estimates computed by GAE (Eq. 2.13) and define V38
as

GAE(y,\)
t

Ve (s,) = Vy(sy) + A (2.15)
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2.1.4. Proximal Policy Optimization

We observe that, in A2C, the probability of an action a, is pushed toward the direction
of its estimated advantage Ay, ie., mg(as | s¢) approaches 0 if A, < 0and 1if 4, > 0.
Especially for large A,, the policy might get updated too forcefully, which can cause a
low action entropy and hence the actor to get stuck in a suboptimal deterministic policy.
Another limitation is that the gradient estimate V,.J(f) must be computed using the
current parameters 6. As a consequence, vanilla A2C is rather sample inefficient because
after performing one update step on a batch of trajectories, a new batch of trajectories
must be sampled under the updated policy.

To solve these limitations, Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015) implements two key improvements: First, TRPO limits the Kullback-Leibler (KL)
divergence between the action distribution of the policy before and after updating its
parameters, denoted Dxr, (mq,,, (- | s¢) || mo(- | s¢)). This prevents the policy from diverging
too much from the old one. Second, it reuses the sampled trajectories of the old policy
and their advantage estimates to allow my to be updated relative to my ., in multiple
optimization steps. More precisely, the proposed optimization problem is

old

max B a)nm,, [Tt(e)At] (2.16)
S.t' E(S,a)wﬂgold [DKL (ﬂ—aold(. ‘ St) H ﬂ-e( ’ St))] S 6

where § € R+ is the maximum allowed KL divergence and r,(0) is the probability ratio
between the current and old policy

W@(at | St)
7Teold (at | St)

ri(0) = (2.17)
For constrained optimization problems like this, more sophisticated methods such as
the conjugate gradient algorithm need to be applied, making training significantly more
complex compared to standard policy-gradient methods.

One of the most frequently used RL algorithms today, Proximal Policy Optimization (PPO)
(Schulman et al., 2017), addresses this issue of TRPO. Rather than enforcing a hard
constraint on the KL divergence, PPO effectively limits how much the probability ratio
r¢(#) can deviate from 1, which has a similar effect as in TRPO but can be implemented

much more efficiently using standard gradient ascent methods. The objective of PPO is
defined as

LCMP(g) = E(s.a)~ma, [min (rt(e)flt, clip (r¢(0),1 —€,1+¢) fltﬂ (2.18)
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where ¢ € (0,1) is the clipping coefficient. Note that L°“P(¢) becomes constant for
r(0) > 1+e€if A, > 0and (0) < 1 — € if A, < 0. In other words, once r,(6) is pushed
out of the interval [1 — ¢, 1 + €] in an attempt to keep maximizing the unclipped TRPO
objective rt(é)flt, PPO suppresses any policy updates that would make the probability
ratio deviate even further.

We can now assemble the final objective that jointly learns the critic and actor by mini-
mizing

L*P9(0,¢) = E [eve - LYF (¢) — LM (0) — cap - H(m)] (2.19)
where cyr, car € R>¢ and

H(mg) = Bgory | — Z mo(a | s¢)logma(a | st) (2.20)
acA

is an optional action entropy term that can foster exploration (Haarnoja et al., 2017).

2.2. Neuro-Symbolic Reinforcement Learning

While deep neural networks such as Convolutional Neural Networks (CNN) (LeCun et al.,
2015) have been successfully applied in various RL tasks (Mnih et al., 2015), they lack
general reasoning capabilities that are crucial for performing novel tasks in previously
unseen environments. In recent years, this limitation has intensified research into neuro-
symbolic agents that can understand their environment on an abstract level and then
deduce their next actions based on logical rules. This requires strong visual perception
capabilities of deep neural networks as well as symbolic reasoning. However, bridging the
gap between both systems involves several challenges that we will detail in the following.

2.2.1. First-Order Logic

Neuro-symbolic agents use formal systems like First-Order Logic (FOL) to encode their
world knowledge and actions in a logical and structured manner. A function-free language
in FOL, £ = (P,D,V), is comprised of a set of predicate symbols P, constants D and
variables V. In an FOL language, a term is either a constant or a variable. An atom
p(ti,...,tn) is the smallest unit in a logical statement, where t;, ..., t, are terms and p

15



is a predicate of arity a(p) = n. If an atom has only constant terms, it is called ground
atom and has a truth value which is either true or false. A substitution o = {X; —
t4,...,%X, — tp} maps variables X; to other terms t; and can be applied to an atom A
to construct a new atom Ao with its variables replaced accordingly. A Horn clause (or
rule) is a finite disjunction of atoms, where all atoms except exactly one are negated,
e.g., AV —B1V---V -B,. This is equivalent to the logical statement A < By A --- A By,
or in words: if all atoms By, ..., B, are true, then A must hold as well. We write Horn
clauses in the form A :- By, ..., B,, where A is called the head and the set {B,..., B}
is called the body of the clause. A ground clause (or ground rule) is a Horn clause with no
variables. We use the term extensional predicate to refer to predicates that only occur in
clause bodies, but never in a clause head.

We can now express an action of the neuro-symbolic agent as a rule, where the head atom
is associated with an action (e.g., go_right,go left,etc.) and the body atoms represent
all preconditions that must hold for that action to be executed. For example, the rule

go right(player) :- left_of(player,X),is ladder(X)

can be read as "the player must go right if there is any ladder X left of it”, where player
is a constant and X is a variable. For better comprehensibility, we will henceforth refer to
a clause that explicitly models an action as action rule and call the atoms in its head and
body action atom and state atoms, respectively. The set of all action rules forms the logic
program of the agent.

A knowledge base consists of a set of true ground atoms (also called facts) and rules. The
process of recursively applying the rules to the facts to infer new facts is known as logic
inference or symbolic reasoning. It allows the neuro-symbolic agent to deduce which action
to take next according to its logic program. More precisely, an action is selected if there
exists a substitution ¢ under which a corresponding action atom can be inferred. Assume,
for example, a knowledge base with facts

{is_ladder(ladder;),is ladder(ladder,),left of(player, ladders)}

and the action rule from the previous example. The action atom go_right(player) can
be inferred from this knowledge base by applying the substitution o = {X — ladder,} to
all state atoms, hence the agent will go right.

Incorporating logic inference into agents is powerful because it enables them to adapt their
actions appropriately to different facts. In order to apply symbolic reasoning, however,
the agent must first translate raw sensory data to a faithful knowledge base. The main

16



challenge here is to train a neural system that can extract logical facts out of visual
scenes without supervision, but rather from experience only. That is, the reward signal
must be propagated back to the neural system to allow for an end-to-end training. With
classical, boolean logic, this is not possible, because each rule is expressed as a chain of
discontinuous (hence non-differentiable) logical connectives like AND (A), OR (V), etc. In
consequence, the logic policy becomes deterministic and discontinuous itself, which breaks
the gradient flow. Therefore, neuro-symbolic agents use fuzzy logic instead, where these
connectives are replaced by differentiable operations and ground atoms have continuous
truth values in [0, 1]. We provide further details on that end in sections 2.2.3 and 2.2.4.
Henceforward, we will refer to a fact as a ground atom in fuzzy logic with a real-valued
probability and assume that all rules in the knowledge base are already given.

In the following, we investigate how to learn a model that can retrieve all facts from
sub-symbolic, e.g., pixel-based input, in more detail.

2.2.2. Object-Centric Representation

The first step is to represent the agent’s environment as a discrete set of constants, as
required by FOL. These constants typically represent disentangled objects with arbitrary
attributes such as their class, position, color and shape. Let f9¢ : RV — REXP with
parameters ¢ be the perception function that extracts F objects with D features each
from an image X € RY of size N. We then call Z = f§°(X) the object-centric (OC)
representation of the input image, and z; € R” the feature vector of object i € [E]. Note
that z; can also be a latent embedding.

Decomposing an image into objects and their features can be done supervised or unsu-
pervised. In a supervised setting, object detection models like Faster R-CNN (Ren et al.,
2015), Mask R-CNN (He et al., 2017) or YOLO (Redmon et al., 2016) are commonly
deployed. Alternatively, pretrained region proposal networks (as found in Faster R-CNN
and Mask R-CNN) can be used to generate image patches of each object which are then
fed to another feature extractor network (Yi et al., 2018; Mao et al., 2019). Object-centric
learning methods like IODINE (Greff et al., 2019) or Slot Attention (Locatello et al., 2020),
on the other hand, use an encoder-decoder approach to learn latent features for a fixed
number of object slots in an unsupervised fashion.

17



2.2.3. Concept Grounding

Given all object constants and the predefined rule set, which implicitly defines all predicates
and variables, the first-order language £ is complete. The final step in connecting neural
perception with symbolic reasoning is to determine the probabilities of all possible ground
atoms under L. Recall that a ground atom expresses some relation or concept, represented
by a predicate, over a set of objects. In order to faithfully compute their truth values, the
agent must therefore be able to understand the concept that each predicate embodies.
This process is also referred to as concept grounding and remains a key challenge in the
field of neuro-symbolic RL.

Let vf; : R¥®)*D _ [0, 1] with parameters 1) be the valuation function of predicate p that
maps object-centric features to the probability of the corresponding ground atom. While
some frameworks simply use hand-crafted or LLM-generated valuation functions (Yi et al.,
2018; Vouros, 2022; Shindo et al., 2024; Sun et al., 2025), any differentiable function can
be learned instead. Viable choices include a simple multilayer perceptron (MLP), a CNN
that processes image patches directly instead of object-centric features (Manhaeve et al.,
2018) and even a Gaussian distribution (Koudouna et al., 2021). Another approach is to
use expert knowledge to design tailored functions with typically few parameters. As an
example, the closeness of two objects could be explicitly modeled as a linear transformation
over their distance (Shindo et al., 2021).

Other neural architectures have been employed specifically in neuro-symbolic systems
that do not rely on expert knowledge. Logic Tensor Networks (Serafini et al., 2016), for
instance, apply symbolic reasoning on top of relations learned by a generalized version of
Neural Tensor Networks (Socher et al., 2013). They capture relations of arbitrary arity
using a combination of multiple linear and bilinear transformations. Another framework,
the Neuro-Symbolic Concept Learner (Mao et al., 2019), associates each concept (e.g.,
Left, Right, Above, etc.) with a vector embedding. A neural function is then learned to
generate embeddings that align with those of the corresponding concepts given object-
centric features. Finally, the truth values are computed based on the similarity between
the generated embeddings and each individual concept embedding. Depending on the
complexity of the predicates that need to be grounded, some neural architectures might
be more suited than others.
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2.2.4. Differentiable Reasoning

Regardless of which neural valuation function is chosen, the difficulty in learning their
parameters is that we do not have access to supervised examples for each concept. Instead,
they need to be learned indirectly from the reward signal and the symbolic policy 7y (- | s)
they produce. The neuro-symbolic agent must therefore be able to calculate action proba-
bilities based on its logic program and a given set of probabilistic facts in a differentiable
manner.

Before we describe some viable methods, let us first introduce some auxiliary notations.
We use the shorthand notation v(G) = vp(21, . . ., Z4(p)) for the probability of a ground
atom G = p(dy, . .., dq(p))- Further, let R be the set of all rules, where head(R) is the head
and body(R) is the body of a rule R € R. Finally, we denote G(R) the set of all ground
rules that can be produced through variable substitution on R.

In classical logic, the head of some rule R is equal to

head(R) = \/ N G (2.21)

R'eG(R) Gebody(R')

where each ground atom represents a logic value (true or false) and disjunction (V) and
conjunction (A) are logical connectives that again return a boolean value. In fuzzy logic
with truth values in [0, 1], those connectives are replaced by fuzzy operators.

A fuzzy conjunction is commonly implemented as a so-called t-norm function, 7', which is
commutative, associative, monotonic and has 1 as neutral element (Esteva et al., 2001).
The complementary function for fuzzy disjunction, called t-conorm or s-norm, is defined
as S(z1,x2) =1 —T(1 — 1,1 — x2). This dual definition ensures that both, t-norm and
its t-conorm, are consistent with fuzzy negation v(—~G) = 1 — v(G) under De Morgan’s
laws, where =(A A B) = -AV —B.

Many such t-norms and t-conorms exist, the most notable are:

Godel: T'(x1,x2) = min(x,z2) S(x1,x2) = max(xi, x2)
Product: T'(z1,x2) =1 - 22 S(z1,22) = 21 + 22 — 1 - T2
Lukasiewicz: T'(x1,x2) = max(0,z1 + x9 — 1) S(z1,z2) = min(z; + x2, 1)
Note that these functions have different characteristics with regard to gradient flow and

accuracy. The Godel functions mimic boolean operators best, but only provide gradient
signals for one atom. Similarly, the Lukasiewicz t-norm has zero gradients for either atom
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if x1 + x9 < 1. Other frameworks explicitly use the Product t-norm and t-conorm (also
called probabilistic sum) because they distribute gradients to both atoms (Evans et al.,
2018). However, the probabilistic sum can be inaccurate compared to the more faithful
maximum t-conorm by Godel. For example, if 1 = zo = 0.5, it greatly overestimates
the maximum (0.75 > 0.5). The Neuro-Symbolic Forward Reasoner (NSFR) (Shindo et al.,
2021) hence uses log-sum-exp (LSE), a smooth approximation of the maximum

i=1

LSE(z1,...,2,) = %log (Z exp(xz-/'y)) (2.22)

where v € R+ is a smoothing parameter and

S = max (1.0,fylog <Z exp(:cﬂ’y))) (2.23)

i=1

is a normalization term. Note that a better approximation of the maximum function with
smaller « comes at the cost of reducing gradient information for the non-maximum values.

Now, each rule head can be grounded according to Eq. (2.21), where ground atoms G
are substituted by their valuations v(G) and the logical connectives are replaced by any
appropriate fuzzy operator. This is done in multiple steps until no more facts can be
deduced or for a fixed number of steps (Evans et al., 2018; Shindo et al., 2021).

Further, each rule can be assigned a weight wr € R. This can be particularly useful for
logic programs that contain multiple action rules for the same action, as it allows the agent
to learn the importance of each rule individually (Shindo et al., 2024).

Taken all together, the action probabilities can be computed by taking the softmax over
the truth values of all action atoms. Let R(a) C R be the set of action rules associated to
action a € A. We further denote v(head(R)) the fuzzy truth value of a rule head, or v(R)
for short. The final symbolic policy then becomes

ZReR(a) exp (wr - v(R))

2.24
oA D nerim XD (wr - 0(R) (2.24)

7['9((1’3): Z
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3. Related Work

Building neuro-symbolic agents involves two fundamental challenges: (1) finding (action)
rules which optimize the policy of the agent and (2) learning a model which retrieves
all facts from sub-symbolic input. Many frameworks address the former challenge by
applying Differentiable Inductive Logic Programming (6ILP) (Evans et al., 2018), provided
that the agent has access to ground-truth symbolic information (Jiang et al., 2019; Vouros,
2022; Shindo et al., 2024). Our work, however, examines the opposite case, in which we
assume the rules (including the logic program) to be given and instead are interested in
finding the corresponding valuation functions. While solutions to that have been studied
in knowledge-based tasks (Serafini et al., 2016), Visual Question Answering (VQA) tasks
(Mao et al., 2019; Mao et al., 2025) as well as robotic manipulation (Hsu et al., 2023;
Mao et al., 2025), concept grounding is still underexplored in the field of RL (Acharya
et al., 2023).

INSIGHT (Luo et al., 2024) is a neuro-symbolic RL framework in which the policy is
modeled as a function over object coordinates. Learning spatial relations like this is akin
to our approach, however, we do not map them directly to action probabilities but first
compile them to predicates in a FOL language instead. INSIGHT does not incorporate
explicit symbolic reasoning, yet its policy is made interpretable by parsing the learned
functions into a textual explanation using GPT-4 (Achiam et al., 2023). Further, INSIGHT
does not learn the policy directly from the reward signal but rather through knowledge
distillation of a neural actor. Other frameworks have used neural guidance to learn
symbolic policies in a similar way (Delfosse et al., 2023).

BlendRL (Shindo et al., 2024) also explores the idea of incorporating a large language
model (LLM) like GPT-4, but not for explaining, rather for directly generating valuation
functions. While recent LLMs are capable of rendering general spatial concepts such as
"left of" or "close by", grounding those concepts to each individual environment is still
challenging and can require manual refinement by human experts.
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Our approach combines and extends on the core ideas of the above-mentioned frameworks:
As in INSIGHT, we represent spatial relations by neural valuation functions instead of
LLM-generated functions, as proposed in BlendRL. However, we still incorporate LLMs to
support concept grounding rather than providing guidance through a neural actor.
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4. Methodology

The core of our framework is BlendRL (Shindo et al., 2024), a neuro-symbolic RL frame-
work that uses hand-crafted valuation functions to ground relational concepts. In Section
4.1, we elaborate why this is a fundamental limitation and detail in Section 4.2 how we
modified BlendRL to overcome this limitation.

4.1. Problem Statement

Motivated by Kahneman’s studies, according to which humans internalize two systems
of thinking (Kahneman, 2011), BlendRL employs both a neural and logic policy. The
neural policy is representative for System 1, which operates quickly and intuitively, whereas
the logic policy resembles the foresightful and logically thinking System 2. For example,
consider the ATARI environments Kangaroo and Seaquest depicted in Figure 4.1. One
might associate System 1 with handling situations that require immediate reactions like
punching an enemy or dodging a missile. Surviving in such situations can demand highly
instinctive actions that are difficult to express in terms of logical rules. On the other hand,
System 2 should take over when long-term planning is required to achieve a greater goal,
such as reaching the child in Kangaroo or rescuing divers in Seaquest. A blending module
finally controls whether the agent is more inclined toward the neural or logic policy.

BlendRL utilizes relational concepts in two components: the logic actor and the blending
module. Both operate according to distinct logic programs, in which predicates represent
abstract concepts such as spatial relations between multiple objects. In order for the logic
actor to know, for example, in which particular direction it must move to approach a
certain object of interest, it must know how it is positioned in relation to that object (e.g.,
left_of, right of, above, etc.). The blending module, on the other hand, must be able
to switch to the neural policy if an enemy or missile is in critical proximity to the player.
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Figure 4.1.: ATARI environments Kangaroo and Seaquest. In Kangaroo (left), the player
uses logic thinking to reach its joey while defending itself against monkeys
along the way, which requires fast reactions. Likewise in Seaquest (right),
the player navigates rationally through the environment to collect divers, but
must quickly dodge or shoot approaching enemies.

In BlendRL, the valuation functions for these predicates are not learned, but rather hand-
crafted by human experts. This is a major limitation of the current framework for multiple
reasons:

(1)

(2)

(3)

The optimal valuation function is unknown or difficult to obtain, e.g., because it
requires a deep understanding of the environment’s physics and dimensions. Think
of a predicate close by missile in Seaquest, which might be used by the blending
module to evaluate if the player is going to be hit by a missile soon and should
therefore favor the neural policy. To design a good valuation function, the interplay
of several factors must be considered, such as the trajectory, velocity and size of the
missile, as well as the defense mechanisms of the player.

In consequence, valuation functions must be adapted to the different charac-
teristics of each environment individually. A missile in Seaquest, for instance,
has other dynamics than a missile (coconut thrown by a monkey) in Kangaroo.
Although close by missile serves the same purpose in both environments, which
is to dodge an object that can Kkill the player, their corresponding valuation func-
tions must reflect these differences. BlendRL can thus not be extended to other
environments without great effort.

Precisely implementing valuation functions by hand is time-consuming, even if
humans have a precise notion of the concepts. For example, it is clear that the player
in Kangaroo must overlap with a ladder to be able to climb it. Without access to the
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technical implementation details of the game, however, the exact region in which
the player is recognized to be on the ladder is unknown and can only be retrieved
by trial and error.

4.2. Framework

Our work aims to resolve these limitations by learning the valuation functions through
experience instead. In the subsequent sections, we give an overview of our framework
and explain how it extends BlendRL to achieve this.

4.2.1. Overview

The overall architecture of BlendRL consists of three components:

(1) A neural policy wjeural : RW*HxC _ o 1]l that maps raw images X € RW>HxC
to a probability distribution over all actions in A.

(2) A logic policy ﬂ';)gic : REXD 5 [0, 1] that uses a predefined logic program to infer
its actions. It is implemented as an NSFR, that reasons over object-centric states
Z € RE*P comprised of E objects with D features each, such as the object’s position,
orientation, value, etc.

(3) Ablending module By : RF*P — [0, 1] that combines the action distributions of both
policies. It uses another NSFR with a separate logic program to decide when to use
which policy based on the symbolic state Z.

The final action distribution is computed as
T0.50 (X, Z) = - mp(X) + (1 - B) - moEe(Z) 4.1)

where 5 = B)(Z) € [0, 1] is the blending weight. All components of the hybrid agent are
trained jointly using the PPO algorithm introduced in Section 2.1.4. In order to estimate
the value function, sub-symbolic and symbolic states are processed separately by a neural
critic Vypewal : RW>HxC R and a logic critic Vlogic . REXD _y R_ Finally, both estimates
are blended into a single value function:

Vi) (X, Z) = B ViU (X) + (1= B) - VE(Z) (4.2)
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Figure 4.2.: Overview of our framework. A concept grounding module takes object-centric
features Z extracted from an image X and computes object relations via
differentiable valuation functions vS}. Those are then applied to a set of logical
rules through forward reasoning to determine a logic policy. Likewise, a
blending module utilizes the relational information to combine the logic policy
with a neural policy that operates on the sub-symbolic state. All components
can be trained jointly.

In addition to optimizing the PPO objective from Eq. (2.19), which includes loss terms for
the value function, the policy ratio and the entropy of the action distribution, BlendRL
adds another regularization term for the blending module:

H(B)) = —f-logf — (1~ B) - log(1 - 5) 4.3)

We call this the blender entropy, as it computes the entropy over the neural and logic
blending weights § and 1 — . It is imposed to ensure that the agent uses both policies
and does not completely rely on a single policy. The final loss of BlendRL becomes
LBlendRL (07 d)? )\7 /’L7 w) =

E [eve - LYF (,w, A) — LYP(0,0,0) — eap - H(m(g.4,0)) — cBE - H(B))] (4.4

where we refer to cgr € R>¢ as the blender entropy coefficient. All other terms and
hyperparameters are analogous to Eq. (2.19), given the hybrid policy 7 4 1) and the
hybrid value function V, , »)-

26



As mentioned, a key limitation of BlendRL is that it uses hand-coded valuation functions to
compute the truth values of all ground atoms. While some predicates are straight-forward
to implement by hand (e.g., counting objects or comparing a value against a threshold),
grounding spatial relationships between multiple objects can be particularly challenging
for the reasons outlined earlier. We hence propose to separate the valuation of spatial
relations from the BlendRL framework and extend it by a concept grounding module which
uses learnable functions instead. The resulting architecture of our framework is depicted
in Figure 4.2.

This change alone may not be effective, as we analyze extensively in Section 6.1. In short,
the spatial relations are ambiguous without stronger supervision, which can cause the
agent to get stuck in a suboptimal local optimum because it relates the wrong objects to
one another. To mitigate this effect, we introduce another component, the concept aligner,
which utilizes an LLM to regularize the learned valuation functions.

We will now discuss both extensions in more detail.

4.2.2. The Concept Grounding Module

Recall that the logic actor and the blending module both operate logically and hence
require faithful facts to reason on. To retrieve these facts, each extensional predicate must
be grounded by appropriate valuation functions. Take, for instance, the logic programs
of the ATARI games Kangaroo and Seaquest, shown in Figure 4.3. In order to decide if
the player should go right in Kangaroo, the predicate 1eft of ladder must be evaluated
between the player and each ladder individually. The higher the truth value computed by
its corresponding valuation function is for any ladder, the more likely it is that the agent
goes right. For the blending program, this is analogous.

Notice how some of the extensional predicates query precise information about the envi-
ronment, such as if an object of a specific type is present in the scene (visible diver)
or if the player has collected a certain amount of objects (full _divers). Given object-
centric features, such information can be obtained exactly and with virtually no effort.
We will therefore focus our attention on what we call spatial predicates, which represent
spatial relations between two or more objects and can be much more difficult to model
for the reasons provided in Section 4.1. For example, it might be plausible to activate
close by missile when the distance between the player and a missile is below a certain
threshold, but we may ask: Which distance threshold is optimal? Is the distance equally
important in both axes? And is distance even the best measure to capture that predicate?
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Kangaroo:
# Policy program
up_ladder() :- on_ladder(player, Ladder)
left_ladder() :- right_of_ladder(player, Ladder)

right_ladder() :- left_of_ladder(player, Ladder)

# Blending program
neural_agent() :- close_by_monkey(player, Monkey)

neural_agent() :- close_by_throwncoconut(player, ThrownCoconut)
logic_agent() :- nothing_around(Z)

Seaquest:
# Policy program
up_rescue() :- full_divers(Z) # all 6 divers collected
up_air() :- oxygen_low(OxygenBar)
up_diver() :- deeper_than_diver(player, Diver)
down_diver() :- higher_than_diver(player, Diver)
left_diver() :- right_of_diver(player, Diver)
right_diver() :- left_of_diver(player, Diver)
# Blending program
neural_agent() :- close_by_enemy(player, Enemy)
neural_agent() :- close_by_missile(player, Missile)
logic_agent() :- visible_diver(Diver)
logic_agent() :- full_divers(Z)
logic_agent() :- oxygen_low(OxygenBar)

Figure 4.3.: Logic programs employed by the logic actor (policy program) and blending

module (blending program) in two ATARI environments. The constant player

represents the only object the agent can control. The special variable Z entails
the whole symbolic state Z. Other uppercase variables are associated with
objects that have the same type as the name of the variable, e.g., Ladder
can be any ladder. Spatial predicates that are learned by our framework are

shown in blue and bold typeface.
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These considerations can require a lot of manual engineering and trial and error to build
good valuation functions. Although LLMs can technically be utilized as well, the generated
functions are still not exact enough to solve the tasks reliably, as we show in Section 5.2.1.
We hence argue that the valuation functions need to be learned by experience instead.

To do so, we replace the hand-coded valuation functions for spatial predicates in BlendRL
with differentiable functions ff/’). Note that they can be jointly trained because both, the
logic actor and the blending module, are implemented as an NSFR and hence support
differentiable logic inference. Given an n-ary spatial predicate p with n > 2 and the
positions z; € [W],y; € [H] of each object, where W, H € N are the width and height of
the scene, we compute truth values as follows:

2] ) n (e m) e

We want to emphasize three aspects of this function: (1) We assume that spatial relations
are invariant to the position of the objects. That is, shifting the positions of each object
by the same vector does not change their relation. We therefore use relative positions
x1 — xj,y1 — y; instead of absolute ones. (2) We normalize the x- and y-positions by
dividing them by the width and height of the scene, respectively. Each offset vector then
has values in [—1, 1]2, which makes them invariant to the actual scene size. (3) Even
though the logic programs listed in Figure 4.3 do not contain spatial predicates with an
arity greater than 2, we still provide a generalized form that can model relations between
any number of objects. In our case, all spatial predicates are binary, the valuation functions
hence simplify to

2 ([2] [2]) - s -

where Az = 331‘;/962 and Ay = Y1 I;yQ.

For ff;, we use small MLPs in our experiments, but any other neural network such as the
ones presented in Section 2.2.3 can be used as well.

4.2.3. The Concept Aligner

Learning those functions is challenging, particularly in symbolic RL environments. To
understand why, we must consider how the loss gets propagated through the whole system
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Figure 4.4.: The Concept Aligner. We instruct LLMs to generate proxy functions g? for
each extensional predicate. The proxy functions and the learned valuation
functions vz are then evaluated on a set of offset vectors (Axz, Ay). Their

outputs are compared against each other via a binary cross entropy loss L¢A
that enforces the valuation functions to align with their proxy functions.

back to the valuation functions. First, the critic provides an advantage estimate to the sym-
bolic policy that indicates how good or bad the selected action was: if the advantage was
positive, the action probability shall increase. Now, recall that each action is represented
as a rule in a logic program, and that its truth value is computed as a fuzzy disjunction
over all possible substitutions of that rule. For example, if there are three ladders in
the game Kangaroo, the action rule right ladder() :- left_of ladder(player,Ladder)
has to be evaluated for all three ladders. This inevitably creates ambiguity, because the
NSFR cannot disentangle for which of the ladders the valuation function should produce
a higher activation in order to make the overall action more likely. In simpler terms, if
the reward signal suggests that going right was a good decision, the symbolic policy can
conclude that the player must have been left of any ladder, but it does not know of which
ladder(s) specifically. Consequently, the valuation function might learn to output high
values for the wrong pairs of objects. We refer to this problem as concept misalignment
and will provide empirical results in Section 5.3 as well as an in-depth theoretical analysis
on that end in Section 6.1.

To solve this problem, we propose to extend the current framework by another component:
the concept aligner. We argue that in order to mitigate concept misalignment, we need
to have weak supervision on the predicate-level in addition to the action-level reward
signal. Conceptually, this requires access to a proxy function gP : [—1,1]2(@®)=1 — [0 1]
that approximates the optimal valuation function f};.
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Several approaches can be considered to achieve this, three of which we will briefly
mention:

(1)

(2)

(3)

Human-in-the-loop (HIL) is a method that integrates human feedback into the
training (Stammer et al., 2022; Natarajan et al., 2025). The core idea of HIL is
to let humans interact with the agent during training to provide weak supervision
whenever needed, e.g., when the concept of a predicate appears ambiguous. For
this task, humans are able to provide highly accurate proxy functions, because
they can naturally understand the semantics of each concept contained in the logic
program thanks to their internal world model. That is, they can intervene with high
confidence in cases where the predicted truth value for a ground atom deviates
from their belief. On the other hand, this approach requires active participation by
humans which is undesirable and often infeasible.

Primitive functions are predefined spatial functions for basic concepts such as "left”
or "close by” and considered primitive because they are not adapted to specific
environments. For each predicate, the primitive which approximates it best can
then be used as the proxy function in place of a human. Although this method

is lightweight, the primitives might not be accurate enough to provide effective
feedback.

LLM-generated functions advance the idea of HIL by replacing humans with an LLM.
With increasing zero-shot generalization capabilities of modern LLMs, it is possible to
generate tailored and hence more accurate proxy functions compared to primitives
by providing context about the environment and each predicate in the prompt. We
acknowledge that this context must once be provided by a human expert, which
requires more effort than selecting primitives, but completely eliminates human
involvement in the training loop.

In our experiments, we used LLMs to generate proxy functions, as this option balances
human overhead and accuracy best. For details on the technical implementation, see
Appendix A. We will now describe how the concept aligner integrates such proxy functions
into the framework.

First, we define a K x K grid with offset vectors (Ax;, Ay;),i € {0, ..., K? -1}, uniformly
spaced in [-1,1]%

4.7)

TK+1

] e [ ] -
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In each training step, we then query the outputs v; = fi(Aﬂ?u Ay;) of the valuation
functions and compare them to the outputs v; = ¢g?(Ax;, Ay;) of the proxy functions for
these samples. We quantify the error between them by computing the mean binary cross
entropy loss

K2-1

Ly |p,Z ™ > —helogu—(1=0) log(1=v)  (48)
pPEPe

over all extensional predicates P, C P. See Figure 4.4 for a visualization of that process.

Finally, we extend the original BlendRL loss from Eq. (4.4) by the concept alignment loss
LCA (). The total objective for our proposed framework becomes

L(‘gv ¢7 >\7 My, W, ¢) = LBlendRL(97 ¢7 )‘7 s, W, ¢) + (1 — YCA " ;) *CCA - LCA(¢) (49)

where we refer to cca € R> as the concept alignment coefficient. Note the additional
term (1 —~ca - %), where ¢ € N is the current timestep out of 7' timesteps in total
and yca € [0,1] is a hyperparameter that controls how quickly the concept alignment
coefficient attenuates. The rational behind the addition of that factor is to allow the
influence of the concept alignment loss to gradually decrease over time. For example, if
~voa = 1, the concept alignment loss will completely vanish by the end of the training,
whereas for yca = 0, the loss will not attenuate at all. This definition is motivated by the
purpose of the concept aligner, which is to provide guidance to the valuation functions
rather than strong supervision. That guidance is potentially more important at early steps
where the signal might be more ambiguous. We provide ablation studies with different
values for cca and ¢ in Section 5.3.
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5. Experiments

In this chapter, we present the results of our framework tested on two ATARI environments,
Kangaroo and Seaquest. First, we will detail the overall experimental setup in Section
5.1. We then provide the empirical results in Section 5.2, followed by additional ablation
studies in Section 5.3.

5.1. Experimental Setup

Our framework is comprised of multiple components, the specifications of which we will
describe in the following. Further, we elaborate our optimization strategy, which includes
a two-stage training pipeline that enables the spatial predicates of the logic actor and the
blending module to be learned separately. We also explain the evaluation method that we
use to assess the accuracy of the learned concepts.

5.1.1. Model

As described in Section 4.2, our framework consists of a neural and a logic policy, which
both employ an actor and a critic. A separate blending module combines the action
distributions of both policies. The spatial predicates used by the logic actor and the
blending module are valuated using differentiable functions. We will now describe the
architecture of all those components in more detail.

A CNN is used as a shared backbone for both, the neural critic V;eural and neural actor
mpewral to extract high-level features from the sub-symbolic state. More specifically, the
CNN processes the last 4 frames of the ATARI environment given as 84 x 84 grayscale
images each and outputs a latent feature vector of size 512. The neural critic and actor
then separately apply a linear transformation on top of those convolutional features to
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compute a value estimate and logits for each of the 18 actions possible in an ATARI game.
A detailed description of their model architecture is provided in Table 5.1.

Component ‘ Layer ‘ Input Size  Output Size Nonlin. Kernel Size Stride

Conv2d | 4 x 84 x84 32x20x20 ReLU 8 4
Shared Conv2d | 32 x20x20 64 x9x9 RelLU 4 2
1ayael;i Conv2d | 64 x9x9  64x7x7 RelU 3 1
Flatten | 64 x 7 x 7 3136
Linear 3136 512 RelLU
Neural critic | Linear | 512 1
Neural actor ‘ Linear ‘ 512 18

Table 5.1.: Model architecture of the neural critic and neural actor.

The logic policy and the blending module, on the other hand, operate on the object-centric
features. We assume that they are provided by an external component, such as one of
those presented in Section 2.2.2. In our experiments, we extract object-centric features
using OCAtari (Delfosse et al., 2023).

For the logic critic Vo8, we use an MLP to process the features for all E objects, where
the maximum number of objects is £ = 49 in Kangaroo and E = 42 in Seaquest. For
each object, we utilize 4 features: a boolean value indicating if the object is present in
the scene, the z- and y-coordinates and either the orientation or the value of the object
(depending on the object type). The layer configurations of the MLP are shown in Table
5.2.

Layer \ Input Size Output Size Nonlin.

Linear | 4- F 120 RelU
Linear | 120 60 RelLU
Linear | 60 1

Table 5.2.: Model architecture of the logic critic. £ = 49 in Kangaroo and E = 42 in
Seaquest.

Unlike the above-mentioned components, the logic actor 7% and the blending module

B, are not implemented as neural networks, but as a NSFR instead (see Section 2.2.4).
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Throughout all experiments, we used the fuzzy log-sum-exp operator (Eq. 2.22) to
aggregate the truth values of action atoms with a smoothing parameter of v = 0.01. To
compute the truth values for spatial relations among two objects, we use a small MLP (see
Table 5.3). It takes the positional offset vector (x; — x2,y1 — y2) between both objects as
input and produces a probability between 0 and 1 as output.

Layer \ Input Size Output Size Nonlin.

Linear | 2 64 ReLU
Linear | 64 32 ReLU
Linear | 32 1 Sigmoid

Table 5.3.: Model architecture of the valuation functions for spatial predicates.

5.1.2. Optimization

We optimize the model parameters according to the PPO algorithm described in Section
2.1.4 with respect to the joint objective from Eq. (4.9). First, we sample 128 steps from
the current policy for multiple environments in parallel. Then, we use GAE from Eq. (2.13)
with a discount factor of v = 0.99 and a decay factor of A = 0.95 to compute advantage
estimates. Based on these, the BlendRL objective is computed with coefficients cyr = 0.5
for the value function, cax, = 0.01 for the action entropy and cgg = 0.01 for the blender
entropy loss. The clipping coefficient from Eq. (2.18) is set to ¢ = 0.1.

As described in Section 4.2.3, the total objective includes an additional loss term for
the concept aligner. We generate proxy functions using the LLMs Claude 4 Sonnet by
Anthropic (Anthropic, 2025) and ChatGPT 4o by OpenAl (OpenAl, 2025). The concept
alignment loss from Eq. (4.8) between the proxy functions and the trainable valuation
functions is computed for a grid of 49 x 49 offset vectors (odd numbers to include the zero
vector). We use an attenuation factor of yca = 1 to anneal the loss term by the end of the
training. Furthermore, we train the model with different concept alignment coefficients
coa € {0.03,0.1,0.3,1.0} and report the best result.

We employ the Adam optimizer with a linearly decaying learning rate of 2.5 - 10~% and
gradient clipping at 0.5. The model parameters are updated in 10 epochs with a batch
size of 32 environments. After that, the next steps are sampled from the updated policy.
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5.1.3. Training Pipeline

Instead of training the model jointly, we train it in two stages: In the first stage, only the
logic policy is learned, including the valuation functions for its spatial concepts. Thereafter,
the logic policy is fixed and the neural policy is learned alongside the blending module in
the second stage.

To understand why, recall that in BlendRL, both, the logic policy and the blending module,
are effectively fixed (except for their clause weights) because their valuation functions are
provided by a human expert. Therefore, the reward signal can be clearly distributed to
one of the two agents and the neural policy can be learned virtually independently of the
logic one. While this simplifies training, the amount of human inductive bias that must be
provided is also one of the biggest limitations of BlendRL.

Our framework overcomes this restriction by making the logic policy and blending module
learnable as well. However, training them jointly is significantly more complex than in
the original BlendRL framework, because the neural and logic policy on one hand and
the blending module on the other hand are highly interdependent. That is, if neither
policy is provided in advance, the model is unable to distinguish if an action should have
been performed by the neural or the logic actor from the reward signal alone, given
that both have an overlapping action space. Another potential problem is that the action
rules of the logic policy are typically designed to model long-term action sequences with
sparse rewards. Therefore, the blending module might learn to completely ignore the
logic program in order to maximize short-term rewards that can only be achieved by the
neural agent.

All of the above-mentioned issues motivate our two-stage training pipeline, in which we
learn both policies separately. To achieve this, we deactivate the neural policy in the first
stage by fixing the blending weight at 5 = 0. We further simplify the ATARI environments
by deactivating all enemies using HackAtari (Delfosse et al., 2024). This is necessary
because the logic agent does not define rules for actions like punching, shooting, jumping
or dodging. Defense and attack mechanisms like these are intended to be learned by the
neural agent instead. This approach is similar to the curriculum learning proposed by
(Mao et al., 2019), where simple concepts are learned first in less complex environments.
Note that without any enemies, the episodes can become extremely long, so we terminate
each episode after at most 3000 steps. Additionally, we only provide rewards when the
player has achieved the high-level goal of the level, i.e., reaching the child in Kangaroo
or rescuing 6 divers in Seaquest. As these goals require long action sequences, we also
increase the step size from 1 to 4. Finally, we fix the clause weights of the logic actor to
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eliminate ancillary effects caused by prioritizing some actions more than others that are
not directly visible from the spatial concepts themselves. We train the logic policy for a
total of 10 million steps.

In the second stage, we freeze the model parameters for the logic agent and its valuation
functions that have been learned in the first stage. All other components, i.e., the neural
agent and the blending module, are trained from scratch. Enemies are reactivated to the
environments, the restriction on the maximum episode length is repealed and the step
size is reset to 1. The reward function is designed such that the player receives a reward
of 20 for reaching the goal and 1 for any other in-game points. This is to incentivize the
agent to pursue high-level goals instead of frequent rewards. We train the second stage
for a total of 60 million steps.

In both stages, we further modified the Kangaroo environment using HackAtari to disable
falling coconuts, repeat the first level and start randomly on the middle or upper floor at
the beginning of each episode.

5.1.4. Evaluation

In the following experiments, we empirically evaluate our framework on the ATARI
environments Kangaroo and Seaquest for each training stage individually. After the
first stage, we test the performance of the logic agent in modified environments without
enemies. We do so to assess whether our framework is able to ground spatial concepts
that align with the policy program of the logic agent. After the second stage, we then
evaluate the hybrid agent in the original environments with enemies reactivated.

To quantify the performance of our framework, we report the average return per episode.
Note that this measure alone does not disclose which specific actions have led to the
returns, so we also report the number of goals that the agent has achieved. This is of
particular interest in the second stage, in which the blending module must be able to
appropriately switch between both policies, depending on the spatial concepts it has
learned. The additional metric therefore allows us to better distinct if the returns are
mainly due to the neural policy and short-term rewards (e.g., defeating enemies), or the
interplay of both policies, enabling the agent to eventually reach the goal of the level.

We train our models on 3 different seeds and report the results over 100 tested episodes.
We compare our framework against a purely neural agent that has been trained with a
fixed blending weight of 8 = 1, and also include results of a logic agent that directly uses
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Kangaroo Seaquest
Model Return Goals Return Goals
Neural 1045i577.8 0.58i0,35 452-63i92.88 10-49i2.21
ChatGPT 984 0.58 835 19.93
Claude 788 0.45 102.8 2.46
BlendRL 3724 2 863.1 20.52
Ours (ChatGPT) 3540.331131.63 240 874.13 14016 20.7641 03
Ours (Claude) 3625.67:‘:36.46 2:|:0 981.3:|:161.95 23.56:&4‘06

Table 5.4.: Results of the logic agent. Returns and number of achieved goals for Kan-
garoo (cca = 0.3) and Seaquest (cca = 0.3 for ChatGPT and cca = 0.1 for
Claude). Average results per episode are reported over 3 seeds, with the stan-
dard deviation denoted in subscript. Enemies were disabled and the episodic
length limited to 3000 steps.

the LLM-generated proxy functions as valuation functions. Furthermore, we report the
results of the original BlendRL agent for reference.

5.2. Results

We now present the empirical results for both training stages individually.

5.2.1. Logic Policy Concepts (1st stage)

First, we investigate the logic agent and the spatial concepts it has learned after the first
training stage. The results compared to the baselines and BlendRL are presented in Table
5.4. In general, our framework matches or even exceeds the performance of BlendRL.
This is regardless of whether the proxy functions of Claude or ChatGPT have been utilized
by the concept aligner. In the following, we will explore these results in more detail, first
with respect to Kangaroo and then separately for Seaquest.

Figure 5.1 visualizes the valuation functions of the logic agent alongside their corre-
sponding proxy functions for Kangaroo. The hand-crafted functions of BlendRL are also
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Kangaroo
BlendRL Claude ChatGPT Ours (Claude) Ours (ChatGPT)

+
¢

left of ladder

right of ladder

on ladder

Figure 5.1.: Spatial concepts learned by the logic agent (Kangaroo). Heatmaps show the
truth values computed by the valuation functions depending on the position
of the player in the scene. Each white dot marks the position of a ladder,
relative to which the truth values of the spatial predicates are computed.
Results are shown (from left to right) for the hand-crafted valuation functions
in BlendRL, the proxy functions generated by Claude and ChatGPT, as well as
the valuation functions learned by our framework using either proxy functions
for weak supervision. The contours of platforms and ladders are depicted as
white boxes.
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shown for reference. While both, Claude and ChatGPT, have managed to capture the
spatial concepts in general, they are not accurately grounded to the environment. See,
for instance, the predicates left of ladder and right of ladder: The area for which
ChatGPT assigns high truth values relative to a ladder extends to the full width of each
floor, but is too narrow vertically. Vice versa, Claude covers almost the full height of
each floor but deactivates the predicates if the horizontal distance between the player
and a ladder exceeds a certain threshold. This illustrates that the LLM-generated proxy
functions on their own and without further adjustments are not suited to valuate the
spatial predicates directly.

Our framework, on the other hand, uses the LLMs to guide the logic agent while still
allowing it to adapt to the environment based on the reward signal. By doing so, our agent
is able to overcome the inaccuracies of the proxy functions and successfully learn spatial
concepts that align with the specific layout of Kangaroo. The resulting logic policy is on
par with BlendRL and significantly outperforms either LLM. This clearly demonstrates
that our agent does not simply overfit to the proxy functions, but can deviate from them
to learn spatial concepts that are better adapted to the respective environment.

Figure 5.2 analogously shows the valuation and proxy functions for Seaquest. Note that
BlendRL employs valuation functions for Seaquest that are much more generic compared
to those of Kangaroo. This is plausible because the player can freely move across the
whole scene in Seaquest, whereas in Kangaroo, the scene is separated into different floors
between which the player can move. ChatGPT was able to account for these environmental
differences and matched the hand-crafted functions of BlendRL almost perfectly. Given that
the proxy functions of ChatGPT were very well grounded already, the valuation functions
learned by our agent are virtually identical and hence have comparable performance.
Claude generated similar proxy functions with a noticeable exception of left of diver,
which factors in the distance of the player to the diver. However, the decay is so strong
that even slightly distant divers are not covered anymore, which drastically limits the
agent’s ability to approach a diver to its right. This also leads to a significant drop in
performance: Claude rescues divers about 8 times less often than ChatGPT and BlendRL.

Surprisingly, the logic agent that was guided by the proxy functions of Claude performed
about 15% better than BlendRL. Looking at the final valuation functions, this may seem
counterintuitive at first, but upon closer inspection, it becomes clear why their policy is
indeed superior. For one, the agent learned that 1eft of diver must cover a broader area
in order to enclose more distant divers as well. The key differentiating factor, however, is,
that the overall activations for 1left _of diver and higher than diver are lower than
their spatial counterparts right of diver and deeper_ than diver. This duality allows
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BlendRL Claude ChatGPT Ours (Claude) Ours (ChatGPT)
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e
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Figure 5.2.: Spatial concepts learned by the logic agent (Seaquest). Each white dot
marks the position of a diver, relative to which the truth values of the spatial
predicates are computed.

left of diver

right_of diver

higher than diver

deeper_than_diver

41



Kangaroo Seaquest
Model Return Goals Return Goals
Neural 2589-33i81.9 0.65i0,07 2215-6i1209.69 OiO
BlendRL 5925 3.48 4706.4 0
Ours (ChatGPT) 4993i4619.32 0.66i0,21 333-57i53.90 1-05i0.66
Ours (Claude) 8155:t4614.72 0.79;&0_19 867.57:|:447.48 0.87:‘:0,98

Table 5.5.: Results of the hybrid agent. Returns and number of achieved goals for Kan-
garoo and Seaquest (both ccp = 0.3).

the agent to prioritize an action if two options are equally viable. That is, if the player
is located in between two divers (horizontally or vertically), the agent will more likely
pursue the diver on the left or above. This decisiveness is crucial and allows the agent
to collect and hence also rescue the divers at a faster pace, which is reflected in the
improved performance. With this insight, the proxy function for left of diver that
Claude generated was actually close to optimal. If the truth values for either spatial
predicate were dependent on the distance, the agent would be approaching the divers
closest to the player instead of moving to one particular direction that is always preferred.

We acknowledge, however, that no such effect was observed for the agent that utilized
the ChatGPT-generated proxy functions. It therefore is questionable if the outperforming
policy was intentionally learned by our framework or just a coincidental effect of the
concept aligner enforcing the low activations of the proxy function that Claude generated.
Yet, the fact that spatial concepts other than those designed by a human expert perform
objectively better reaffirms the argument of our framework: Grounding concepts by hand
is difficult, even if they seem trivial, and should therefore be learned by the agent itself.

5.2.2. Blending Concepts (2nd stage)

The results for the hybrid agents learned in the second and final stage are presented in
Table 5.5. We will again explore the results separately for Kangaroo and Seaquest.

For Kangaroo, we observe that our agents achieve similar or better performance with regard
to the episodic return. However, the number of times the kangaroo child was reached
is significantly lower compared to what the original BlendRL agent is able to achieve.
The reason for this discrepancy is, that, instead of approaching the child, our agents use
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Figure 5.3.: Neural blending weights in representative episodes of Kangaroo and
Seaquest. The hybrid agents mainly act according to the neural policy

(B8 > 0.5).

their neural capabilities to get frequent rewards by repeatedly punching monkeys. Hence,
the logic policy is largely ignored, as can be seen in Figure 5.3, which shows the neural
blending weight /3 over the course of one episode. The blending module always favors
the neural policy and as a result, the child is rarely reached. Also note that 8 sometimes
drops to 0.5, which happens when there are no monkeys in the scene (e.g., because the
player has died and the level is reset). The fact that the logic policy is not activated even
if monkeys are absent is because the blending module disables the logic agent almost
completely by pushing the respective clause weight to near zero (see Figure 5.4).

This effect is also reflected in the spatial concepts that the blending module has learned,
shown in Figure 5.5. Claude and ChatGPT suggest the agent to switch to the neural
policy whenever a monkey is in close proximity to the player, which aligns with the
valuation function employed by BlendRL. Note that, according to these functions, the
player and the monkey must be on the same floor, which is reasonable given that the
player cannot be attacked by a monkey on a different floor. Our framework, however,
activates close_by monkey even if a monkey is one floor above the player. The reason for
this is that the agent learns to move to the very right, where it waits for the next monkey
to climb down from the floor above. As monkeys keep constantly spawning from the top
right, the neural policy stays activated, which allows the agent to get frequent rewards for
punching the monkeys. This also causes close by throwncoconut to be never evaluated
by the agent because the monkeys get defeated before they can even throw a coconut
at the player. Therefore, our framework just adopts the proxy functions provided by the
LLMs. Ultimately, the valuation functions are fitted such that the blending module can
predominantly use the neural policy.

For Seaquest, equivalent observations can be made. Even though our agents are able to
rescue all 6 divers occasionally (as opposed to BlendRL), the logic policy is still mainly
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Kangaroo:
1.80 :: neural_agent() :- close_by_monkey(player, Monkey)
0.50 :: neural_agent() :- close_by_throwncoconut(player, ThrownCoconut)
0.01 :: logic_agent() :- nothing_around(Z)
Seaquest:
1.80 :: neural_agent() :- close_by_enemy(player, Enemy)
0.20 :: neural_agent() :- close_by_missile(player, Missile)
0.02 :: logic_agent() :- visible_diver(Diver)
0.02 :: logic_agent() :- full_divers(Z)
0.24 :: logic_agent() :- oxygen_low(OxygenBar)

Figure 5.4.: Clause weights of the blending programs. The weights are listed next to
their clause definitions. Logic policies are mainly suppressed in both ATARI
environments.

Kangaroo
BlendRL Claude ChatGPT Ours (Claude) Ours (ChatGPT)

Figure 5.5.: Spatial concepts learned by the blending module (Kangaroo). Each white
dot marks the position of a monkey or a thrown coconut, respectively.

close by monkey

close by throwncoconut
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Seaquest
BlendRL Claude ChatGPT Ours (Claude) Ours (ChatGPT)
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Figure 5.6.: Spatial concepts learned by the blending module (Seaquest). Each white
dot marks the position of an enemy or missile, respectively.

close by enemy

close by missile

neglected (see Figure 5.3). Hence, the attribution of the logic agent to these results
can be considered rather insignificant. In fact, the logic policy is essentially ignored
since the blending module decreased its corresponding clause weights (see Figure 5.4).
Solely in the rare case that the player collected 6 divers, it is assigned a slightly higher
importance. Like in Kangaroo, the blending module also does not learn spatial concepts
that allow for a clear separation of both policies, as can be observed in Figure 5.6. Instead,
the valuation functions for close by enemy cover almost the whole scene, causing high
neural activation even if an enemy is far afield. We also observe that close by missile
resembles the proxy functions of the LLMs. This is either because the agent eliminates
enemies before they can shoot any missiles, or because the neural activation is mostly
attributed to the presence of an enemy rather than a missile.

To summarize, in both ATARI environments, none of our agents were able to utilize the
neural and logic policy in a synergistically way to achieve the desired goals.
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5.3. Ablation Studies

In this section, we present ablation studies to gain further insights into our framework.

Learning Spatial Concepts without the Concept Aligner To highlight the importance of
the concept aligner, we conduct experiments on the logic actor in which spatial concepts
were learned without any weak supervision. For that, we disabled the concept alignment
loss during the first training stage by setting cca = 0 and kept all other hyperparameters
unchanged.

The results for Kangaroo on 3 independent seeds are shown in Figure 5.7, alongside heat
maps of the most likely actions. While none of the agents were able to faithfully ground
the spatial concepts, the learned policies are not entirely ineffective. In fact, all agents
succeed to reach the child when starting from the upper or, in one case, the middle floor.
Due to the spurious valuation functions, however, they do not generalize globally.

To understand why this happens without weak supervision, recall that the agent only
receives a reward for reaching the child, so the immediate actions that led to this event will
be reinforced first (i.e., going right to reach the ladder and then climbing up the ladder).
As these actions are bound to their respective logical rules, the predicates on_ladder and
left of ladder must get activated accordingly. The agent can achieve this by either
increasing the valuations in relation to the ladder on the upper, middle or lower floor, or
by increasing any combination thereof. As humans, we understand that the player can
only be left of, right of or on a ladder that is on the same floor, but without some kind of
supervision on the object-level, any other option is equally viable for the agent.

In consequence, we can observe that the agent attends to incorrect ladders in distinct
ways. Compare, for instance, the global activations for on_ladder in all 3 seeds: While all
agents have learned that the upper ladder must be climbed up in general, they failed to
learn that the agent was on that exact ladder in particular. Instead, the valuation functions
rather resemble the concepts ”on the ladder two floors above” or ”on the ladder one floor
above on the opposing side”.

This phenomenon can also be observed for the other predicates and highlights a funda-
mental issue in concept grounding. It emphasizes the necessity for additional guidance
and motivates the integration of our concept aligner.
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Kangaroo (cca =0)
Seed 1 Seed 2 Seed 3

left_of ladder

right_of ladder

on_ladder

N right
N left
Bup

Most Likely Actions

Figure 5.7.: Spatial concepts learned by the logic agent with disabled concept aligner
and most likely actions (Kangaroo). Results are shown for 3 different seeds.
The agent fails to align the concepts to the correct ladders.
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Seaquest (cca =0)
Seed 1 Seed 2 Seed 3

left _of diver

right of diver

higher than diver

deeper than diver

=

Figure 5.8.: Spatial concepts learned by the logic agent with disabled concept aligner
(Seaquest). Results are shown for 3 different seeds. The agent is able to
learn suitable concepts without requiring additional supervision.
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Interestingly, the spatial concepts learned for Seaquest are mostly well-grounded, even
without the weak supervision provided by the concept aligner (see Figure 5.8). This might
be surprising because Seaquest is a more complex and dynamic environment with up to
four divers that can be in the scene simultaneously, hence making concept misalignment
potentially more likely. We provide a hypothesis for why the results for Seaquest contrast
so strongly with those of Kangaroo in Section 6.1.

Impact of Different Concept Alignment Coefficients Our framework allows to control
how strongly the valuation functions shall align with the proxy functions via the concept
alignment coefficient cca. Lower values give the model more flexibility to adapt the
concepts to the environment, but might not be effective enough to prevent concept
misalignment. On the other hand, too high values for ¢ca can cause the valuation functions
to overfit on the suboptimal proxy functions, which in turn can lead to suboptimal policies.

To help mitigate this, we introduced a second hyperparameter, yca, which influences
how strongly the concept alignment loss LC* attenuates over time. The rationale behind
this factor is the following: We assume that the proxy functions are accurate enough to
associate the concepts with the correct objects, yet too poorly adapted to the environment
to render learnable valuation functions unnecessary. Therefore, enforcing L°* is more
important at the beginning when the agent has not yet figured out how to align the
valuation functions correctly, but might be obstructive afterwards where we want it to
freely adjust to the environment.

In Figure 5.9, we compare the spatial concepts learned for different values of ccs without
annealing the concept alignment loss (yca = 0). It demonstrates how crucial the choice of
cca is to balance both, flexibility and alignment: On one hand, the agents clearly misalign
the valuation functions for on_ladder or left_of ladder when using cca < 0.1. On the
other hand, increasing the coefficient to cca = 1.0 causes overfitting (compare with the
Claude-generated proxy functions in Figure 5.1). Setting the coefficient to ccp = 0.3 has
shown to provide the best tradeoff.

When we run the same experiments but allow the loss term to linearly decrease over
time by setting vca = 1, we can make two interesting observations (see Figure 5.10):
(1) The valuation functions are generally more precise and less shallow, which highlights
the improved adaptability. (2) The agent does not overfit for cco = 1.0, which indicates
that annealing L°* makes training less sensitive to the choice of cca and hence eases
hyperparameter search.
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Kangaroo (yca =0)
Cca = 0.03 Cca = 0.1 Cca = 0.3 Cca = 1.0

left of ladder

right of ladder

on_ladder

Figure 5.9.: Spatial concepts learned by the logic agent without annealing the concept
alignment loss (Kangaroo). Results are shown for the agent that used the
proxy functions generated by Claude with respect to different values for cca.
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Kangaroo (yca =1)

cca =0.03

left of ladder

right of ladder

on_ladder

Figure 5.10.: Spatial concepts learned by the logic agent when annealing the concept
alignment loss (Kangaroo). Results are shown for the agent that used the
proxy functions generated by Claude with respect to different values for

CCA-
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Figure 5.11.: Comparison of the concept alignment loss L°* and the performance during
training (Kangaroo). Results are compared between agents trained with
different concept alignment coefficients (cca € {0.3,1.0}) and attenuation
factors (yca € {0, 1}). The concept alignment loss is computed with respect
to the proxy functions generated by Claude. Performance improves when
concepts diverge from the proxy functions. Agents converge to the optimal
policy earlier if the concept alignment loss is attenuated.

Another perspective on that end is provided in Figure 5.11, which compares the perfor-
mance between the agents learned with yca = 0 and yca = 1 during training. First, we
observe that an increase in performance is always incident to an increase in L°A. This
demonstrates that an agent must be able to diverge from the proxy functions in order
to improve its policy. Second, note that for ccp = 0.3, both agents eventually learned a
suitable policy, but the one that attenuated the concept alignment loss did converge much
quicker.

Overall, these results suggest that a good hyperparameter configuration for the con-
cept aligner is to use higher values for c¢cy while decreasing it over time by setting the
attenuation factor ycp to 1.
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6. Analysis & Discussion

The empirical results give interesting insights into the challenges of learning concepts in
neuro-symbolic RL systems that we want to discuss further. We first provide a theoretical
analysis on the issue of concept misalignment and elaborate in more detail under which
circumstances this problem can occur. We then point out limitations of our framework
and suggest future directions of research to overcome these limitations and to improve
the performance of our framework.

6.1. Concept Misalignment

The integration of a concept aligner to our framework was motivated by the inability
of neuro-symbolic agents to link concepts to their corresponding objects in specific en-
vironments. If, for example, an agent correctly learns that it has been on a ladder in a
certain state, identifying which of the three ladders the player climbed up in Kangaroo
can be difficult from the available signal alone. Therefore, it might associate the concept
on_ladder to an unrelated ladder, which we refer to as concept misalignment. Examples
of this phenomenon can be viewed in Figure 6.1.

To understand why and when this problem can occur, let us recall how these concepts are
learned using Kangaroo as an example. Every action a is represented by an action rule
R that has one body atom of form p(player, Ladder). Here, p is a spatial predicate (e.g.,
on_ladder) with a parametric valuation function vi, and Ladder is a variable representing
the set of all 3 ladders. Let zp1ayer and zjaq¢er further be the object-centric features of the
player and a ladder in the current state s. Then,

m(a|s) ~v(R)= \/  vf(ladder) (6.1)

P
laddercLadder
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left_of_ladder left_of ladder right_of_ladder on_ladder on_ladder

; i1
E

Figure 6.1.: Examples of misaligned spatial concepts (Kangaroo). Truth values for each
predicate are shown relative to a single ladder object, marked as white dot.

where vgj(ladder) is shorthand for vz(zplayer, Z1aader) and V denotes a fuzzy operator for
disjunction rather than the boolean logic connective.

Accordingly, the outputs of the valuation functions will be pushed in the direction of

oL 9L  Ou(R)

= 2
8vi(ladder) 0v(R) sz(ladder) 6.2)

with L being the objective to be optimized. It enforces an increase in v(R) if the action
in the current state shall be reinforced, and, conversely, a decrease of v(R) to make the
action less likely. This change in v(R) is then distributed to the individual ground atoms,
i.e., the outputs vz(ladder) for each ladder. However, if the signal is underdetermined, it
is unclear how to distribute the changes exactly.

To illustrate this, let us represent a state s in terms of the offset vectors between the player
and each ladder. For instance, if the player is on the third ladder with zero offset, we can

represent the state as
o (07 [roo] fo
— \[100] |50 ] " [0

Furthermore, assume that v(up_ladder) shall be increased for that state. Without more
information, it is impossible for the agent to determine on which of the three ladders the
player was. Hence, increasing vf;n—ladder(ladder) relative to either ladder leads to equally
good policy updates for that particular state. Also, regardless of which fuzzy operator
is used for disjunction, the gradient signal will mostly, if not solely, be distributed to the
atom with the highest truth value, which amplifies the misalignment even further once

the concept is associated with the wrong atom.
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The agent can only make a consistent and globally optimal decision if it knows how to
behave correctly in similar states. As an example, let us assume that the agent is certain
that the player was not on any ladder in the following states:

(=100 0 —100 ~ {1100 200 100

2=\ | 150 |7 [100] " | 50 B=As50][ 0] |50
Now, the environment is not underdetermined anymore. This is because the agent can
deduce from state s, and s3 that the player is not on any ladder if their offset vector is

[0 100]7 or [100 50]7. Therefore, when the player was in state s, it must have been on the
third ladder.

Note that this is just a simplified theoretical example. In practice, especially for static
environments such as Kangaroo, the state space that the agent can possibly explore might
be too small, and even if the agent can observe arbitrary states, the reward signal might
be too noisy to clearly identify the correct objects.

Dynamic environments like Seaquest, on the other hand, are potentially more robust
against these issues compared to Kangaroo for two reasons: (1) The agent can freely move
within the scene, so different arrangements of the player and the divers can be explored
naturally. (2) Seaquest is about collecting divers, so the number of divers present in the
scene will vary throughout an episode, with fewer divers inevitably causing less confusion.

In conclusion, the purpose of the concept aligner is to provide additional signal in under-
determined environments that can help overcome concept misalignment.

6.2. Limitations

Our framework comes with some limitations that we will address in the following. First,
we specifically designed it to model spatial relations, assuming that the concept can
be grounded solely based on the object positions. A relation such as same color(-,-)
would require other attributes to reason on and is therefore not explicitly covered by our
framework. Incorporating more object attributes might be relevant even for the spatial
predicates that we employed. If, for example, ladders in Kangaroo had different heights,
the valuation functions should take this into consideration accordingly.

In principle, the valuation functions can be extended to include additional features or
to model relations between more than two objects, like in between(-,-,-). However,
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the LLMs must generate compatible proxy functions, and with an increasing number of
features or objects, they might get less accurate.

Moreover, recall that the concept alignment loss is computed over a grid of two-dimensional
offset vectors. If more features are needed to valuate a concept, the number of feature
combinations to be sampled increases exponentially. While this can be mitigated to some
extend by decreasing the sample resolution of continuous variables (like coordinates), it
might negatively impact the effectiveness of the concept aligner.

Another limitation of utilizing proxy functions is that the object-centric features must be
encoded in a format that the LLMs can understand. Latent encodings such as produced by
unsupervised feature extractor models like Slot Attention or IODINE can hence not be
used with our framework.

Also recall that the logic policy must be learned in simplified environments without enemies
or, more abstractly, without obstacles that could only be overcome by the intervention of a
neural agent. Modifying environments in this way is feasible in simulations such as ATARI
games, but can be much more difficult or even impossible to achieve in the real world.

Finally, we acknowledge that the logic programs, including the extensional predicates to be
learned, must be provided in advance. It remains an open research question how concepts
can be grounded while simultaneously using frameworks such as §ILP to construct suitable
rules.

6.3. Future improvements

In its current state, the extensibility of our framework is limited with regard to the types
of concepts it can learn. To solve more complex environments, other object features might
need to be processed in addition to the positions, which does not scale well because it
would require the concept alignment loss to be computed over significantly more samples.
One way to remedy this problem is to adaptively reduce the number of samples, or to
redesign the concept aligner altogether such that it does not require sampling at all. For
instance, instead of comparing the outputs of the proxy and valuation functions for fixed
states of the environment, the actual states observed by the agent could be used instead.
In general, improving the scalability of our framework is an important direction for further
research.
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Another limitation is that proxy functions can only be generated by LLMs if the object
features can be interpreted. To support latent feature representations like those learned by
Slot Attention, the weak supervision must be provided on the sub-symbolic state, which is
impossible to achieve with unimodal LLMs. Using multimodal Vision Language Models like
CLIP (Radford et al., 2021) instead can make the framework less dependent on explicit
object-centric information, but their effectiveness needs to be studied.

One of the key advantages of neuro-symbolic agents over purely neural ones is the fact that
their policy can be inspected and even modified by a human. This does not hold for the
learned concepts themselves if they are computed by an opaque function such as an MLP.
Substituting them by more interpretable architectures such as Deep Differentiable Logic
Gate Networks (Petersen et al., 2022) can hence make our framework more transparent.
Adopting program synthesis (Wiist et al., 2024) for valuation functions could be another
promising contribution in this regard.

Lastly, we have seen that our framework is incapable of learning appropriate concepts
for the blending module, with the logic policy being ignored almost completely. This is
potentially related to the increased frequency of rewards that only the neural agent can
achieve (e.g., by punching enemies), so reward shaping might be an option to put more
emphasis on reaching the actual goals. To incentivize the blending module to only use
the neural policy when necessary, another approach can be to explicitly reward the agent
when using the logic policy. Overall, preventing the hybrid agent from unlearning the
logic policy would be a significant contribution.
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7. Conclusion

In the course of this thesis, we developed a framework based on BlendRL for learning
neuro-symbolic agents which can ground relational concepts by interacting with their
environment. In contrast to existing systems that rely on manually crafted valuation
functions such as BlendRL, our method learns them directly from reward signals and
hence reduces the need for human intervention.

Our analysis revealed that learning concepts purely from experience is difficult due to
concept misalignment that occurs in underdetermined RL environments. To address
this issue, we employ LLMs to provide additional weak supervision, which proved highly
effective in our experiments. As a result, our method successfully learned logic policies
for the ATARI environments Kangaroo and Seaquest that reached or even surpassed the
performance of BlendRL agents.

Nonetheless, our framework was not able to learn a blending policy that effectively
combined the logic and neural agents in a synergistic way. To the contrary, the logic policy
was largely circumvented, which highlights the need for further research to understand
and resolve this issue. It also remains an open question to which extent our approach
can be extended to more complex concepts and environments. Moreover, we rely on
object-centric representations and predefined logical rules, which may not always be
available.

While these challenges are important directions for future work, our findings demonstrate
that concept grounding in RL is generally feasible. This underlines the contribution of our
framework toward a long-term vision, in which neuro-symbolic agents can autonomously
solve abstract tasks without requiring any human bias in advance.
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A. LLM-Generated Proxy Functions

In the following, we provide technical details on how we prompt LLMs to generate proxy
functions.

A.1. Prompt Generation

We use the templating engine Jinja (Pallets, 2025) to generate individual prompts for
each extensional predicate from a template. It contains the overall instructions with
placeholders for information about the environment and the predicates. The template
configurations used in Kangaroo and Seaquest are provided in Appendix A.2. Using
templates is advantageous for two reasons: (1) They make iterative refinements possible
that can be applied to all prompts simultaneously and (2) they can be reused and therefore
extended to other environments by replacing the template configuration.

In all of our experiments, we used the following prompt template:

# Your Role

You are a model that determines whether a player in the Atari game {{ env.name }} is
{{ predicate.description }} a {{ predicate.object_types | join(' or ') }}{% if
predicate.purpose %} such that the player can {{ predicate.purpose }}{% endif %}.

Specifically, given the positional offset between the player and a {{ predicate.
object_types | join(’ or ') }}, you must construct a Python function that
calculates whether the player is {{ predicate.description }} the {{ predicate.
object_types | join(' or ') }}{% if predicate.purpose %} and in a position to {{
predicate.purpose }}{% endif %}, based on the game’s mechanics and scene layout.

# Game Context

* The scene is {{ scene.width }} points wide and {{ scene.height }} points tall ({{
scene.width }}x{{ scene.height }}).

Origin (@,0) is at the top-left of the screen.

All object coordinates refer to their center.

* %
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**0bject Dimensions**

* Player: {{ scene.player.width }}x{{ scene.player.height }}

{% for object_group in scene.object_groups -%}

* {{ object_group.type | capitalize }}: {{ object_group.width }}x{{ object_group.
height }}

{% endfor %}

**Game Rules and Mechanics:*x

{% for rule in env.rules_and_mechanics -%}
* {{ rule }}
{% endfor %}

# Your Task

* You will create a function called ‘{{ predicate.name }}(x: torch.Tensor) -> torch.
Tensor‘'. It has one PyTorch tensor ‘x‘ of size ‘[batch_size, 2]‘ as input and
produces a PyTorch tensor of size ‘[batch_size]’ as output.

* Each two-dimensional vector in the batch ‘x‘ is the offset between the positions of

the player and a {{ predicate.object_types | join(' or ') }}. For instance, if

the position of the player is ‘[100, 100]‘' and the position of the {{ predicate.
object_types | join(’ or ') }} is ‘[5@, 808]‘, the offset vector will be ‘[100 -
50, 100 - 80] = [50, 20]°.

* For each sample in the batch, you must compute a probability between 8 and 1. This
probability must indicate how certain you are that the player is {{ predicate.
description }} the {{ predicate.object_types | join(’ or ') }}{% if predicate.
purpose %} and able to {{ predicate.purpose }}{% endif %}. You may output only ©
or 1 as well.

* Think about the typical layout of objects in the Atari game {{ env.name }} and
consider its game rules and mechanics for the function you create.

# Output Format

* End your answer with a Python function of the following form:

def {{ predicate.name }}(x: torch.Tensor) -> torch.Tensor:
# x is a tensor of size [batch_size, 2]
# function goes here and returns a tensor of size [batch_size]

0

A.2. Template Configurations

Each environment is represented by a template configuration that contains all necessary
information to generate the prompts. These information include:
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* Environment: Name of the ATARI game as well as the rules and game mechanics
that provide relevant background for the proxy functions.

* Scene: Dimensions of the scene, the player and relevant object types in the scene.

* Predicates: Name, abstract description, triggered action and purpose of the predi-
cate, as well as the types of related objects (except the player).

The template configuration for Kangaroo is given as:

env:
name: Kangaroo
rules_and_mechanics:
- "The player can move left/right and jump only when on a platform."
- "The player climbs up ladders to reach the platform above."

scene:
width: 160
height: 210
player:
width: 8
height: 24

object_groups:
- type: ladder
width: 8
height: 35
- type: platform
width: 128
height: 4
- type: monkey
width: 6
height: 15
- type: thrown coconut
width: 2
height: 3
predicates:
- name: "left_of_ladder"
object_types:
- ladder
description: "left of"
action: go right
purpose: go right to reach the ladder
- name: "right_of_ladder"
object_types:
- ladder
description: "right of"
action: go left
purpose: go left to reach the ladder
- name: "on_ladder"
object_types:
- ladder
description: "on"
action: go up
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purpose: climb up the ladder
- name: "close_by_monkey"

object_types:

- monkey

description: "close by"

action: throw punches

purpose: throw punches at the monkey
- name: "close_by_throwncoconut"

object_types:

- thrown coconut

description: "close by"

action: dodge

purpose: dodge the thrown coconut

Similarly, the template configuration for Seaquest is:

env:
name: Seaquest
rules_and_mechanics:
- "The player can move left/right/up/down to collect divers."
- "The player loses a life if hit by a missile, shark or submarine."

scene:
width: 160
height: 210
player:

width: 16

height: 11

object_groups:

- type: diver
width: 8
height: 11

- type: shark
width: 8
height: 7

- type: submarine
width: 8
height: 11

- type: missile
width: 6
height: 4

predicates:

- name: "left_of_diver"

object_types:

- diver

description: "left of"

action: go right

purpose: go right to get closer to the diver
- name: "right_of_diver"

object_types:

- diver

description: "right of"

action: go left

purpose: go left to get closer to the diver
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- name: "higher_than_diver"

object_types:

- diver

description: "above"

action: go down

purpose: go down to get closer to the diver
- name: "deeper_than_diver"

object_types:

- diver

description: "below"

action: go up

purpose: go up to get closer to the diver
- name: "close_by_enemy"

object_types:

- shark

- submarine

description: "close by"

action: shoot

purpose: shoot to kill the enemy
- name: "close_by_missile"

object_types:

- missile

description: "close by"

action: dodge

purpose: dodge the missile

The generated Python code for the proxy functions can be found on the GitHub repository.
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