
Master’s Thesis

Learning from Within: Hidden-State
Dynamics as Rewards for Training LLMs

Department of Computer Science
Ludwig-Maximilians-Universität München

Ilir Hajrullahu

Matriculation number: 12802929

Munich, September 28th, 2025

Submitted in partial fulfillment of the requirements for the degree of M. Sc.
Supervised by Dr. Yunpu Ma

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Acknowledgments

I would like to sincerely thank my supervisor, Dr.Yunpu Ma, for the possibility to write my
thesis at the TRESP Lab, his constructive feedback, and invaluable support throughout
the course of this thesis. His expertise and encouragement have been crucial in shaping
both the direction and the quality of my research.
I am also very grateful to Jinhe Bi for his guidance, insightful advice, and generous support
during the development of this work. His input greatly helped me navigate challenges and
improve the clarity of my contributions.
On a more personal note, I wish to express my deepest gratitude to my wife, Xheneta,
and to my family for their unwavering support, patience, and encouragement. Their belief
in me provided the strength and motivation to complete this journey.
Finally, I dedicate this thesis to the memory of my father, whose appreciation for education
and hard work continues to inspire me every day.

Munich, September 2025

I

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Abstract

Large language models (LLMs) have achieved impressive success across a wide
range of reasoning-intensive tasks, but their alignment with human-preferred be-
havior typically depends on reinforcement learning (RL) with correctness-based
rewards. Such rewards are often sparse, delayed, and computationally costly to
evaluate, making them a bottleneck for scalable RL fine-tuning. This thesis ex-
plores whether intrinsic properties of the models themselves—specifically, changes
in hidden-state representations as a model reasons through a problem—can serve as
meaningful reward signals. These dynamics reflect how confidently and consistently
the model progresses through its reasoning trajectory, offering a potentially cheaper
and denser alternative to external correctness checks.

We conduct two complementary sets of experiments to evaluate this idea. In the
first, we instrument GRPO training runs driven by external correctness rewards (a
weighted sum of 90% accuracy and 10% format) and collect hidden-state statistics
purely as observational probes. This setting allows us to test whether hidden-state
dynamics correlate with correctness, independent of optimization. Results show a
clear positive alignment: rollouts with stronger internal signals are substantially
more likely to produce correct answers, with the effect being strongest in larger
models. Quantitative analyses using AUROC, AUPR, and FPR@95 confirm that
these signals provide non-trivial predictive power.

In the second set of experiments, we replace external rewards entirely with in-
trinsic ones and train multiple model scales on reasoning benchmarks. Here, both
the 1.5B and 3B models quickly collapsed in accuracy, leading to early termination
of training, while the 7B model completed the full run but still failed to achieve
stable accuracy gains. In all cases, the intrinsic reward itself was readily optimiz-
able, but task-level correctness consistently degraded. A contributing factor is the
heavy reliance of EasyR1 on strict formatting: without external incentives to pre-
serve boxed answers and <think> tags, models trained with intrinsic rewards alone
often produced outputs that optimized the hidden-state trajectory but could not be
parsed as correct.

Taken together, these findings establish that hidden-state dynamics encode mean-
ingful information about reasoning quality. While they are not yet sufficient to
drive learning when used directly, they provide a valuable foundation for future
alignment techniques. In particular, strategies such as reward shaping, percentile-
based filtering, discretized reward assignment, hybrid intrinsic–extrinsic signals, and
data-efficient training may help stabilize optimization and fully harness hidden-state
dynamics as reinforcement signals.

II

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Contents

1 Introduction 1
1.1 Machine Learning . 1

1.1.1 Parameters and Learning . 2
1.1.2 Training Process . 2
1.1.3 Types of Machine Learning . 2
1.1.4 Evaluation . 3

1.2 Large language models . 3
1.2.1 Next-Token Prediction . 3
1.2.2 Training Objective . 3
1.2.3 Decoding Strategies . 4

1.3 Transformers . 5
1.3.1 Learnable Parameters . 6
1.3.2 Input Representation . 6
1.3.3 Masked Self-Attention . 6
1.3.4 Advantages for LLMs . 7

2 Related Work 8
2.1 Reinforcement Learning for LLMs . 8
2.2 RL with Verifiable Rewards (RLVR) for LLMs 8
2.3 RL for LLMs without External Rewards 9

3 Methodology 10
3.1 Reinforcement Learning for LLMs . 10
3.2 Group Relative Policy Optimization (GRPO) 11
3.3 From Hidden-State Dynamics to an Intrinsic Reward 13

4 Implementation 16
4.1 System Architecture . 16
4.2 Technology Stack . 16

4.2.1 Rationale and interactions . 17
4.3 Intrinsic Reward Computation . 18
4.4 Training Loop with Relative Advantages 19
4.5 Hybrid Execution . 20
4.6 Data Flow and Batching . 20
4.7 Evaluation and Diagnostics . 20
4.8 Complexity and Scaling . 20

5 Experiments 22
5.1 Hardware and Infrastructure . 22
5.2 Hyperparameters . 22
5.3 Models . 24
5.4 Dataset . 24
5.5 Baselines . 25
5.6 Evaluation Metrics . 26

III

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

6 Results 28
6.1 Reward–Correctness Alignment . 28
6.2 Task-Level Performance with Intrinsic Reward 32

7 Conclusion and Future Work 37

A Appendix V
A.1 Training Hyperparameters . V
A.2 Example Metadata Entry . VI

B Electronic appendix VIII

IV

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

1 Introduction

Large Language Models (LLMs) have achieved remarkable performance across a wide
range of natural language processing tasks, driven by advances in transformer architec-
tures, large-scale pretraining, and instruction tuning [1, 2]. However, aligning such models
with task-specific goals or human preferences often relies on reinforcement learning from
human feedback (RLHF) or other external reward mechanisms. These approaches require
costly human annotation, domain-specific verifiers, or curated evaluation datasets, which
are not always available — especially for specialized or low-resource domains.
This thesis investigates an alternative approach: training LLMs using intrinsic or internal
rewards derived solely from the model itself. Specifically, it focuses on probability-based
reward functions, where the model’s own per-token likelihood for a reference answer serves
as the reward signal [3, 4]. This eliminates the dependency on external evaluators, en-
abling model training in any domain where only input–output pairs are available. The
internal reward acts as a self-assessment of answer quality, leveraging the model’s internal
confidence to guide optimization.
This thesis is situated entirely in the text-only LLM setting, without multimodal com-
ponents. As the core optimization framework, it employs Generalized Reinforced Policy
Optimization (GRPO)— a recent variant of reinforcement learning fine-tuning that allows
flexible reward shaping and efficient scaling to large models. By combining GRPO with
intrinsic probability rewards, this thesis explores whether models can improve reasoning
quality and task performance without external feedback, and compares their performance
directly to models trained with external reward signals.
The contributions of this thesis are threefold:

1. It formalizes a probability-based intrinsic reward function tailored to the LLM set-
ting.

2. It integrates this reward into a GRPO training pipeline and evaluates its effective-
ness on open-source instruction-tuned models such as Qwen [5].

3. It provides a detailed empirical comparison between internal-reward-trained mod-
els and external-reward-trained models, analyzing performance, computational effi-
ciency, and domain-general applicability.

By focusing on internal rewards, this thesis aims to lower the barrier for domain adaptation
and reasoning improvement in LLMs, making reinforcement learning fine-tuning feasible
even in contexts where external reward signals are scarce or non-existent.

1.1 Machine Learning

Machine Learning (ML) is a field of artificial intelligence concerned with building algo-
rithms that can learn patterns from data and improve performance over time without
being explicitly programmed for every possible scenario [6, 7]. Formally, we can consider
a model as a parameterized function:

fθ : X → Y

where:

1

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

• X is the input space,

• Y is the output space,

• θ ∈ Rn is the set of model parameters (weights and biases) that determine the
function’s behavior.

1.1.1 Parameters and Learning

The learning process consists of adjusting θ such that the model predictions fθ(x) are
as close as possible to the desired outputs y for given training examples (x, y). This is
typically achieved by minimizing a loss function L(θ):

θ∗ = argmin
θ

1

N

N∑
i=1

ℓ
(
fθ(xi), yi

)
where ℓ is the sample-wise loss (e.g., mean squared error, cross-entropy), and N is the
number of training examples.

1.1.2 Training Process

A common optimization approach is stochastic gradient descent (SGD) [8] and its variants
(e.g., Adam, RMSProp), which iteratively update parameters in the opposite direction of
the loss gradient:

θ ← θ − η∇θL(θ)

where η is the learning rate, controlling the step size.

1.1.3 Types of Machine Learning

Depending on the availability and nature of labels, ML can be categorized into:

• Supervised learning: The model is trained on labeled pairs (x, y), learning a
mapping from inputs to known outputs.

• Unsupervised learning: The model is trained without explicit labels, aiming to
discover hidden patterns or structures in the data (e.g., clustering, dimensionality
reduction).

• Self-supervised learning: A form of supervised learning where the labels are
automatically derived from the input data itself (e.g., predicting missing words in a
sentence). Large Language Models (LLMs) are commonly trained this way.

• Reinforcement learning: An agent interacts with an environment and learns to
take actions that maximize a cumulative reward signal.

2

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

1.1.4 Evaluation

After training, the model is evaluated on unseen data (test set) to measure generaliza-
tion performance using metrics such as accuracy, F1-score, or perplexity (in the case of
language models).
This foundational understanding of ML concepts is essential for comprehending how Large
Language Models operate and how they are trained to predict the next token in a se-
quence.

1.2 Large language models

Large Language Models (LLMs) are deep neural networks trained to model the probability
distribution of sequences of tokens. Formally, given a sequence of tokens:

x = (x1, x2, . . . , xT)

the model estimates the joint probability as:

P (x) =
T∏
t=1

P (xt | x<t)

where x<t denotes all tokens preceding position t.

1.2.1 Next-Token Prediction

At inference time, LLMs predict the next token xt given the preceding context x<t:

xt = argmax
v∈V

P (v | x<t; θ)

where:

• V is the vocabulary,

• θ are the learned model parameters.

The conditional probability P (v | x<t; θ) is obtained by applying the softmax function to
the output logits zv:

P (v | x<t; θ) =
exp(zv)∑
u∈V exp(zu)

1.2.2 Training Objective

LLMs are typically trained to minimize the negative log-likelihood (cross-entropy loss):

L(θ) = − 1

T

T∑
t=1

logPθ(xt | x<t)

This encourages the model to assign high probability to the correct next token in a
sequence.

3

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

1.2.3 Decoding Strategies

During generation, various decoding strategies can be applied [9]:

• Greedy decoding: selecting the token with the highest probability at each step,

• Random sampling: sampling tokens proportionally to their probabilities,

• Temperature scaling: adjusting the sharpness of the probability distribution be-
fore sampling, where lower temperatures (τ < 1) make the distribution more peaked
(deterministic) and higher temperatures (τ > 1) make it flatter (more diverse):

P (v | x<t; θ, τ) =
exp(zv/τ)∑
u∈V exp(zu/τ)

• Top-k sampling: restricting sampling to the k most probable tokens,

• Nucleus (Top-p) sampling: sampling from the smallest set of tokens whose cu-
mulative probability exceeds p.

Most state-of-the-art LLMs are implemented using the Transformer architecture, de-
scribed in detail in Section 1.3.

4

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

1.3 Transformers

Transformers have emerged as the foundational architecture for modern LLMs, replacing
earlier recurrent and convolutional models in natural language processing (NLP) [1]. The
architecture relies entirely on attention mechanisms, removing recurrence and enabling
highly parallelized training (see Figure 1). In this thesis, we focus on the decoder stack,
as used in autoregressive large language models such as GPT and Qwen, where the model
predicts the next token based on all previous tokens.

Figure 1: Transformer architecture with encoder (left, red) and decoder (right, blue),
adapted from [1].

Core Components

A standard transformer consists of stacked layers, each containing:

• Multi-head self-attention mechanisms,

• Position-wise feed-forward networks,

5

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

• Residual connections and layer normalization.

For autoregressive models (e.g., GPT-family), only the decoder stack is used.

1.3.1 Learnable Parameters

Training a transformer means learning all its weight matrices and biases, which include:

• Embedding matrices: Token embeddings and positional encodings that map dis-
crete token IDs to continuous vectors.

• Attention projections: Weight matrices for queries (WQ), keys (WK), and values
(WV) in each attention head.

• Feed-forward networks: Two linear transformations (W1,W2) with a nonlinearity
(e.g., GELU) in between, applied independently to each token position.

• Output projection: A linear layer mapping hidden states back to vocabulary
logits.

• Layer normalization parameters: Scale and shift terms for stabilizing training.

All these parameters, collectively denoted as θ, are optimized jointly to minimize the
training objective.

1.3.2 Input Representation

Tokens are first mapped to continuous embeddings:

E = (e1, e2, . . . , eT), et ∈ Rd

Positional encodings (learned or sinusoidal) are added to embeddings to incorporate se-
quence order, since attention is inherently permutation-invariant.

1.3.3 Masked Self-Attention

The attention mechanism computes contextualized token representations:

Attention(Q,K, V) = softmax

(
QK⊤
√
dk

+M

)
V

where:

• Q,K, V are obtained from linear projections of E using WQ,WK ,WV ,

• M is a causal mask that prevents attending to future tokens.

Multi-head attention uses multiple sets of Q,K, V projections to capture different rela-
tional patterns.

6

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

1.3.4 Advantages for LLMs

Self-attention enables each token to directly attend to all previous tokens, efficiently mod-
eling long-range dependencies in a single operation. This ability to leverage global context
has been crucial for improvements in reasoning, summarization, and other language tasks
[10].
In the context of this thesis, the token-level probability outputs from transformer de-
coders form the basis for intrinsic reward computation, allowing direct measurement of
the model’s internal confidence without external verifiers.

7

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

2 Related Work

This chapter reviews the landscape of reinforcement learning approaches applied to large
language models (LLMs), with a particular emphasis on alignment strategies that balance
efficiency and scalability. The discussion progresses from traditional reinforcement learn-
ing from human feedback (RLHF), to verifiable reward frameworks (RLVR) that leverage
programmatic correctness checks, and finally to more recent efforts that eliminate external
reward dependencies by exploiting intrinsic signals derived from the models themselves.
Together, these lines of research provide the methodological context and motivation for
this thesis, which investigates whether hidden-state dynamics can serve as a reliable basis
for reinforcement learning in reasoning tasks.

2.1 Reinforcement Learning for LLMs

The introduction of reinforcement learning into LLM post-training began with reinforce-
ment learning from human feedback (RLHF), where a reward model trained on human
preference data guides policy optimization to better align model outputs with human
intent [2]. In recent years, especially from 2024 to 2025, research has increasingly em-
phasized reasoning-specific RL methods, verifiable reward signals, and scaling laws for
reasoning alignment [11, 12, 13]. The DeepSeek-R1 framework and its many open repli-
cations have popularized techniques such as Grouped Reinforcement Policy Optimization
(GRPO) and demonstrated strong performance improvements in math, coding, and logic
benchmarks [14]. Comprehensive surveys such as “100 Days After DeepSeek-R1” doc-
ument best practices for data curation, KL-penalty tuning, rollout sampling strategies,
and reasoning-centric evaluation [14].
A recurring insight is the shift from general preference-based rewards toward task-grounded
signals, which reduce reward hacking and align training more closely with downstream
evaluation objectives. This shift underpins many of the methodological advances surveyed
by [14] and subsequent replications.

2.2 RL with Verifiable Rewards (RLVR) for LLMs

RL with verifiable rewards (RLVR) replaces the learned reward model with an automat-
ically checkable signal, such as exact string match for math answers, execution-based
correctness for code, or formal verification in structured domains [15]. This allows scal-
able, low-latency feedback during RL without the need for expensive human annotations.
RLVR has been central to recent reasoning pipelines, especially GRPO-based training
with programmatic correctness checks, and is a core component of many high-performing
open-source reasoning LLMs [14].
However, RLVR is inherently constrained to domains with objective verifiers (math, cod-
ing, formal logic). Several works have proposed verifier-reduced or verifier-free variants
to extend coverage. For example, NOVER incorporates supervised signals into an RL
objective without using an explicit external verifier, enabling RL-style improvements in
general text-to-text generation [16]. Other works focus on refining credit assignment in
RLVR; KTAE (Key-Token Advantage Estimation) introduces token-level advantage esti-

8

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

mation based on the statistical association between specific tokens and rollout correctness,
improving both accuracy and output conciseness without additional models [17].

2.3 RL for LLMs without External Rewards

A growing body of research removes the dependency on external verifiers entirely by
using the model’s own intrinsic signals as feedback. INTUITOR [18] is a method which
implements reinforcement learning from internal feedback (RLIF) by replacing the GRPO
reward with the model’s self-assessed certainty (confidence) in its generated answers,
showing competitive in-domain performance and strong generalization to out-of-domain
tasks.
Related approaches focus on confidence- and entropy-based objectives. RLSC (Rein-
forcement Learning via Self-Confidence) [19] rewards high-confidence generations, yielding
measurable reasoning gains with minimal training cost on Qwen-based models. Entropy
Minimization [20] optimizes the negative entropy of token distributions directly, without
labels or external rewards, achieving performance competitive with GRPO on reasoning
tasks and enabling inference-time uncertainty reduction without parameter updates.
These intrinsic-reward approaches align with findings from verification-free reasoning re-
search [21], which show that LLMs possess substantial latent knowledge and that lever-
aging internal certainty signals can drive domain-agnostic improvements. By removing
the need for curated verifiers, these methods open scalable paths for RL training across
domains where explicit reward signals are scarce or unavailable—an approach central to
this thesis’s focus on text-only LLMs.

9

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

3 Methodology

This chapter describes the training methodology employed in this thesis. All experiments
are implemented using the open-source EasyR1 framework1, which provides a modular
and scalable environment for reinforcement learning (RL) post-training of LLMs. EasyR1
supports algorithms such as PPO and GRPO, integrates seamlessly with distributed train-
ing setups, and offers a flexible interface for defining custom reward functions—making it
well-suited for integrating the proposed Chain of Enlightenment (CoE) reward.
We first outline how RL is typically applied to LLMs, including the widely used supervised
fine-tuning (SFT) phase that precedes RL optimization. In the standard RLHF pipeline
[2], a pretrained base model is initially adapted to follow instructions via SFT on curated
human-annotated data. A separate reward model is then trained from human preference
data, and policy optimization (e.g., PPO or GRPO) is performed with the reward model
as the feedback signal.
Recent advances in reasoning-centric LLM training have demonstrated that the SFT stage
can be skipped entirely. For example, the DeepSeek-R1 framework [11] directly applies
Grouped Reinforcement Policy Optimization (GRPO) to the pretrained base model, opti-
mizing it using domain-specific verifiable rewards for reasoning tasks. This direct-to-RL
approach reduces complexity, eliminates intermediate fine-tuning stages, and focuses op-
timization efforts on the final reasoning behavior.
In this thesis, we follow a similar philosophy by starting directly from a pretrained base
model and applying RL without an SFT stage. However, instead of using external,
task-specific verifiers as in RLVR, we introduce an intrinsic reward mechanism based
on the CoE framework. This approach computes rewards from the model’s own hidden
state dynamics during inference, capturing the evolution of internal representations across
transformer layers. By leveraging these internal signals, we can train LLMs in a domain-
agnostic manner, removing the dependency on manually engineered or domain-restricted
external reward functions while still retaining the benefits of RL-based post-training.

3.1 Reinforcement Learning for LLMs

Reinforcement learning has become a key component in aligning large language models
(LLMs) with desired behaviors and task requirements. The canonical setup is reinforce-
ment learning from human feedback (RLHF) [2], which is structured around three main
stages and is illustrated in Figure 2:

1. Supervised Fine-Tuning (SFT): The pretrained base model is first fine-tuned
on high-quality, human-curated instruction–response pairs. This step adapts the
model to an instruction-following style before reinforcement learning.

2. Reward Model Training: A separate reward model is trained to predict human
preference scores, given pairs of model outputs for the same prompt. This reward
model acts as a proxy for human judgment during RL.

1https://github.com/hiyouga/EasyR1

10

https://github.com/hiyouga/EasyR1

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

3. Policy Optimization: The SFT-adapted model is then optimized using an RL
algorithm—commonly Proximal Policy Optimization (PPO) or its variant Grouped
Reinforcement Policy Optimization (GRPO). Optimization maximizes the learned
reward while applying KL regularization to keep the fine-tuned policy close to the
original distribution.

Pretrained
Base Model

Supervised
Fine-Tuning

(SFT)
SFT Model

Policy Op-
timization

(PPO/GRPO
+ KL)

Fine-tuned
Policy

Human Preferences
(Chosen

vs. Rejected)

Train Re-
ward Model

Reward Model

reward signal

Reference Model

KL penalty

Prompts / Rollouts

Maximize reward + KL regularization

Figure 2: RLHF pipeline: a pretrained model is adapted via SFT, a reward model is
trained from human preferences, and the policy is optimized with PPO/GRPO under a
KL constraint to a reference model.

Direct-to-RL Approaches

While SFT is common, recent reasoning-focused pipelines such as DeepSeek-R1 [11] skip
the SFT phase entirely. Instead, they perform direct policy optimization starting from
the pretrained base model, using verifiable task-specific rewards (e.g., exact match in
math problems, unit tests for code). This reduces intermediate steps, avoids potential
overfitting from small SFT datasets, and focuses optimization on the final objective from
the start.

Position of This Thesis

Our work adopts the direct-to-RL philosophy but replaces external, domain-specific ver-
ifiers with an intrinsic reward signal based on the model’s hidden state dynamics—the
Chain of Enlightenment (CoE) method (see Section 3.3). This enables RL training in
settings where external verifiers are unavailable, while retaining the benefits of iterative
policy improvement.

3.2 Group Relative Policy Optimization (GRPO)

Group Relative Policy Optimization (GRPO) [22] is a reinforcement learning algorithm
tailored for large language model (LLM) training, especially in reasoning-intensive set-
tings. Unlike standard Proximal Policy Optimization (PPO) [23], which relies on a learned
value function for advantage estimation, GRPO removes the critic entirely and computes
group-relative advantages by comparing rewards among multiple responses to the same
prompt.

11

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Let a prompt be represented as a token sequence:

x = (x1, x2, . . . , xT),

and let {y(i)}Gi=1 be G different completions sampled from the current model parameters
θ. Each completion receives a scalar reward r(i), and the group mean reward is:

r̄ =
1

G

G∑
j=1

r(j).

The group-relative advantage for the i-th completion is then:

A(i) = r(i) − r̄.

This removes prompt-level bias and stabilizes training by making rewards comparable
across completions of the same prompt.
The GRPO objective is:

LGRPO(θ) = Ex,y(i)

[
min

(
ρ(i)(θ) · A(i), clip

(
ρ(i)(θ), 1− ϵ, 1 + ϵ

)
· A(i)

)
− β ·KL

(
Pθ(· | x) ∥Pθref (· | x)

)]
,

where:

• ρ(i)(θ) = Pθ(y
(i)|x)

Pθold
(y(i)|x) is the likelihood ratio,

• ϵ is the clipping parameter to prevent destructive updates,

• β controls the KL penalty against a reference model Pθref .

A visual comparison of PPO and GRPO is provided in Figure 3. While PPO uses an
actor–critic setup with a learned value function, GRPO removes the critic and instead uses
group-relative advantages computed across responses to the same prompt. This structural
simplification makes GRPO more efficient for reasoning LLMs, where reward magnitudes
can vary widely.

12

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Prompt x Policy πθ Response y

Reward r
(RM / Verifier)

Critic / Value
Function
Vϕ(x)

Advantage
A = r − Vϕ(x)

PPO Update
(clip + KL)

Reference
Model

KL penalty

PPO (with critic)

Prompt x Policy πθ
G Responses
{y(i)}Gi=1

Rewards {r(i)}
(RM / Verifier
/ Intrinsic)

Group mean
r̄ = 1

G

∑
j r

(j)

Group-relative
advantages

A(i) = r(i) − r̄

GRPO Update
(clip + KL;
no critic)

Reference
Model

KL penalty

GRPO (no critic)

Figure 3: Conceptual comparison of PPO and GRPO. PPO uses an actor–critic setup
where a value function (critic) estimates Vϕ(x) and advantagesA = r−V . GRPO removes
the critic and uses group-relative advantages A(i) = r(i) − r̄ from multiple responses to
the same prompt. Both use a clipped update with a KL penalty to a reference model.

In this thesis, GRPO is used as the main optimization algorithm, with the external verifier
replaced by our proposed internal Chain of Enlightenment (CoE) reward computed from
hidden states.

3.3 From Hidden-State Dynamics to an Intrinsic Reward

We construct an intrinsic, trajectory-level signal from hidden-state dynamics and use it
to drive policy optimization with grouped relative advantages. The process is illustrated

13

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

in Figure 4. Unlike conventional reinforcement learning with external reward models, our
approach exploits internal signals directly from the policy’s hidden representations.

Notation. Let x denote a prompt and ŷ = (y1, . . . , yT) a sampled response. During
a forward pass of the actor (decoder-only transformer), we expose per-layer, per-token
hidden states

H
(ℓ)
t ∈ Rd, ℓ = 0, . . . , L, t = 1, . . . , T.

Layerwise dynamics. We measure representation change across layers at fixed token
positions:

First order (“velocity”): ∆
(1)
ℓ,t = H

(ℓ+1)
t −H

(ℓ)
t , (1)

Second order (“curvature”): ∆
(2)
ℓ,t = H

(ℓ+1)
t − 2H

(ℓ)
t +H

(ℓ−1)
t . (2)

Normalization. To ensure comparability across sequences, we scale differences by a
single denominator:

Z =
∥∥H(L)

avg −H(0)
avg

∥∥
2
+ ε, H(ℓ)

avg =
1

T

T∑
t=1

H
(ℓ)
t .

This stabilizes energy magnitudes and aligns training with the rollout code path.

Energy definition. We define token-level contributions and an overall sequence energy:

et =
1

L− 1

L−1∑
ℓ=0

∥∆(1)
ℓ,t ∥2
Z

+
1

L− 2

L−1∑
ℓ=1

∥∆(2)
ℓ,t ∥2
Z

, E =
1

T

T∑
t=1

et. (3)

Here, E reflects how much hidden states “move” and “curve” while generating the re-
sponse.

Groupwise normalization. For each prompt, we draw G responses and compute
{Ej}Gj=1. To remove scale ambiguity, we normalize per prompt:

Ẽj =


Ej −minj Ej

maxj Ej −minj Ej + ϵ
if maxj Ej ̸= minj Ej,

0 otherwise.

This yields Ẽj ∈ [0, 1], preserving only relative rankings within the group.
In practice, an additional per-prompt UID normalization step was applied before rewards
were passed into the GRPO update. This ensures that, for each prompt, the rollout
with the highest intrinsic score is mapped to 1.0, the lowest to 0.0, and all others scaled
proportionally in between. This second normalization stage provides scale invariance
across batches and prevents instability when absolute magnitudes differ between prompts.

14

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Token-level shaping. The scalar Ẽj is distributed uniformly across valid response
tokens so that rewards sum to Ẽj, improving credit assignment without training a critic.

From rewards to advantages. The normalized rewards {r(i)int} are aggregated into a
group mean and relative advantages:

r̄ =
1

G

G∑
j=1

r
(j)
int , A(i) = r

(i)
int − r̄.

These A(i) values drive a GRPO update with PPO-style clipping and (optionally) a KL
penalty to a frozen reference model.

Pipeline illustration. Figure 4 shows the pipeline. A policy πθ generates G responses
per prompt. For each response, hidden states across layers are collected and transformed
by the internal reward module into per-response rewards. These are normalized within
the group, converted into relative advantages, and used to update the policy. No external
reward model or verifier is used; the diagram explicitly crosses them out.

Prompt x

Policy πθ
(decoder-only transformer)

G responses {y(i)}Gi=1

Hidden states per response
{hℓ,(i)}ℓ=1..L, i=1..G

Internal reward module
(maps {hℓ,(i)} → {r(i)int})

Internal rewards {r(i)int}Gi=1

Group mean r̄ = 1
G

G∑
j=1

r
(j)
int

Advantages A(i) = r
(i)
int − r̄

GRPO update (clip
+ KL; no critic)

Fine-tuned Policy

Reference Model

External RM / Verifier

generate G responses

for each y(i)

compute per-response features

KL penalty

Figure 4: Internal reward with multiple responses. The actor generates G responses
per prompt, hidden states are converted into per-response intrinsic rewards, which are
normalized and turned into relative advantages for a GRPO update. External reward
models are not used.

15

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

4 Implementation

This chapter describes how the conceptual framework introduced in Chapter 3 was realized
in practice. Whereas the methodology presented the high-level design and motivation,
here we focus on the concrete execution: the training loop, reward computation, batch-
ing scheme, and runtime orchestration. Figures from the methodology (e.g. Figure 4)
illustrated the conceptual flow; in this chapter we emphasize the actual implementation
details and algorithms.

4.1 System Architecture

The runtime is organized around a single controller that coordinates three roles:

• Actor: the trainable transformer model, sharded with FSDP and updated via policy-
gradient steps.

• Rollout engine: a lightweight decoding backend that produces multiple candidate
responses per prompt.

• Reference policy: an optional frozen copy used only for KL regularization.

The controller samples prompts, requests k rollouts per prompt, computes intrinsic re-
wards by inspecting hidden states, normalizes them within each group, and finally issues
an update to the actor. This separation between actor and rollout engine enables both
high throughput and memory efficiency.

4.2 Technology Stack

This chapter summarizes the software and hardware technologies underpinning our sys-
tem. The stack is organized in layers—from data handling and deep learning frameworks
through distributed training, algorithms, monitoring, and deployment—reflecting how
components interact during large-scale experiments. The objective is reproducibility, scal-
ability, and practical operability on HPC clusters while supporting modern reinforcement-
learning post-training of LLMs. A schematic overview of this layered architecture is shown
in Figure 5.

16

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Deep Learning Frameworks
PyTorch; FSDP (Fully Sharded Data Parallel); Hugging Face Transformers;
Gradient checkpointing; Mixed precision (BF16/FP16); FlashAttention

Algorithms & Training
GRPO (group-relative PPO, no critic); PPO (baseline); KL regularization;
CoE intrinsic reward (hidden-state dynamics); Token-level shaping

Models
Qwen2.5-7B-Instruct (base); support for VLMs (vision-language);
Tensor parallelism; Weight sync Actor ↔ Rollout

Distributed & Infrastructure
Ray (orchestration); SLURM (HPC scheduling); Multi-GPU/Multi-node;
Docker/Enroot; NVIDIA NGC registry

Data & Processing
Hugging Face Datasets; JSON/PyArrow/HDF5; Jinja2 prompt templates;
MathRuler grading; SymPy parsing; LaTeX processing

Monitoring & Experiment Management
Weights & Biases (W&B), SwanLab; Console logs; Metadata and checkpoints

Deployment & Inference
Inference endpoints; Quantization; Export tools; API interfaces

Figure 5: Technology stack used in this project, layered from core training components
down to runtime, data tooling, observability, and deployment.

4.2.1 Rationale and interactions

The system architecture can be understood as a layered stack, where each component
builds on the previous to ensure scalability, stability, and reproducibility:

• Frameworks layer: Provides the foundation with PyTorch, FSDP, Hugging Face
Transformers, and mixed precision training to enable efficient large-scale training
and memory feasibility.

• Algorithms layer: Implements GRPO (without critic) combined with KL reg-
ularization and CoE-based intrinsic rewards. Token-level shaping improves credit
assignment without the need for a value model.

• Models layer: Centers on Qwen2.5-7B-Instruct, supporting tensor-parallel infer-
ence and weight synchronization between actor and rollout engines.

• Distributed & Infrastructure layer: Relies on Ray, SLURM, Docker/Enroot,
and NGC containers to provide orchestration, scheduling, and reproducible environ-
ments for multi-node GPU clusters.

17

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

• Data & Processing layer: Standardizes inputs using Hugging Face Datasets,
Jinja2 prompting, and mathematical tooling (MathRuler, SymPy, LaTeX) to ensure
consistent grading and evaluation.

• Monitoring layer: Uses W&B and SwanLab to capture metrics, artifacts, and
checkpoints, underpinning transparency and reproducibility.

• Deployment layer: Covers inference endpoints, quantization, and model export,
enabling downstream use of trained models.

Together, these layers constitute a coherent stack that balances throughput (tensor/multi-
GPU parallelism, rollout separation), stability (KL regularization, normalized intrinsic
rewards), and reproducibility (containers, logging, checkpoints), enabling rigorous experi-
mentation at scale.

4.3 Intrinsic Reward Computation

The intrinsic reward signal is computed directly from hidden-state dynamics. While Chap-
ter 3.3 introduced this idea conceptually, here we describe the concrete implementation
details as realized in our codebase.

1. For each sampled response, hidden states are exposed at every layer.

2. Instead of operating on all token positions, we apply a mean-pooling step across
response tokens at each layer. This produces one representative vector per layer,
reducing memory and storage overhead while still capturing trajectory-level dynam-
ics.

3. First- and second-order differences across layers are then computed on these pooled
vectors (Eqs. 1, 2), yielding ∆(1) and ∆(2) signals that describe the magnitude and
curvature of representation change.

4. The differences are normalized by a global scale factor Z (Eq. 3), ensuring compa-
rability across responses of varying lengths and magnitudes.

5. The resulting statistics (mean norms of ∆(1) and ∆(2)) are aggregated into a single
sequence-level energy score E.

6. Within each group of G rollouts, per-sequence energies are min–max normalized to
produce Ẽ values in [0, 1], preserving only their relative ranking.

7. Per-prompt UID normalization: before rewards are passed into the GRPO
update, each rollout group (identified by a prompt UID) is normalized again. The
highest-scoring response is mapped to 1.0, the lowest to 0.0, and intermediate ones
scaled proportionally. This step ensures scale invariance across prompts and batches.

8. Finally, the scalar Ẽ is distributed uniformly across the response tokens. This
shaping improves credit assignment in the absence of a critic by attributing the
reward back to all tokens.

18

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

This implementation differs slightly from the conceptual formulation: rather than comput-
ing dynamics at the token level and averaging afterward, we first mean-pool over tokens
at each layer and then compute inter-layer dynamics. This design choice makes the ap-
proach computationally feasible on large models, while retaining the key property that
the reward reflects how much the hidden-state trajectory “moves” and “curves” across
the network during generation.

4.4 Training Loop with Relative Advantages

Each training step processes a batch of prompts, generates multiple responses per prompt,
evaluates them with the intrinsic reward, and updates the actor with groupwise relative
advantages. The full procedure is summarized in Algorithm 1.

Algorithm 1 One training iteration (intrinsic CoE + grouped relative advantages)

1: Inputs: batch size B, group size k, actor πθ, rollout backend G, (optional) reference
πref , KL coefficient β ≥ 0

2: Sample prompts {xi}Bi=1

3: for i = 1 to B do
4: {ŷi,j}kj=1 ← Generate(G, πθ, xi, k) ▷ decode k responses per prompt
5: end for
6: Compute token log-probabilities {log πθ(yi,j,t | xi, yi,j,<t)} under the current actor
7: if KL regularization is enabled then
8: Compute {log πref(yi,j,t | xi, yi,j,<t)} and per-token KLi,j,t

9: end if
10: for each sequence (i, j) do ▷ intrinsic CoE energy from hidden-state dynamics
11: Expose per-layer hidden states for ŷi,j
12: Compute first- and second-order layerwise differences
13: Normalize by scale Z; obtain d1 mean(i,j), d2 mean(i,j)

14: Ei,j ← d1 mean(i,j) + d2 mean(i,j)

15: end for
16: for each prompt i do ▷ per-prompt min–max normalization

17: Ẽi,j ←
Ei,j −minj Ei,j

maxj Ei,j −minj Ei,j + ϵ
for j = 1..k

18: ai,j ← Ẽi,j −
1

k

∑k
j′=1 Ẽi,j′ (relative advantage)

19: Convert Ẽi,j to token rewards {ri,j,t} with
∑

t ri,j,t = Ẽi,j

20: end for
21: Define the objective:

L(θ) =
B∑
i=1

k∑
j=1

ai,j
∑
t

log πθ(yi,j,t | xi, yi,j,<t) − β
∑
i,j,t

KLi,j,t

22: UpdateActor(πθ,L) ▷ take a gradient step on actor parameters
23: Return: updated actor πθ

19

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Because advantages are computed relatively within each group, no critic network is
needed. This both simplifies the stack and reduces compute.

4.5 Hybrid Execution

The implementation combines FSDP for actor training with a dedicated rollout backend:

Actor. The trainable policy is wrapped with PyTorch FSDP. Parameters, gradients,
and optimizer state are sharded across data-parallel ranks. Activation checkpointing and
mixed precision are used to reduce memory.

Rollout. Decoding runs on a specialized inference engine (e.g. tensor-parallel backend)
to maximize throughput. The rollout process has no optimizer; it mirrors the actor’s
parameters.

Synchronization. After each update, a lightweight mapping synchronizes actor param-
eters with the rollout engine. This avoids keeping duplicate model copies in memory.

Reference. When KL regularization is enabled, a frozen copy of the policy is used solely
for KL computations. It can be offloaded to conserve GPU memory.

4.6 Data Flow and Batching

Prompts are tokenized with the same chat template used during evaluation. Batches are
organized hierarchically: global batches feed one iteration, mini-batches define optimizer
steps, and micro-batches are accumulated under FSDP.
Rollouts operate on prompt-only inputs, producing responses that are concatenated and
masked so that gradients apply only to response tokens. All reward signals (energy,
normalized scores, advantages) are first computed at the sequence level and then shaped
across tokens.

4.7 Evaluation and Diagnostics

During training, we monitor whether intrinsic rewards align with correctness by computing
AUROC, AUPR, and FPR@95 between energies {E} and ground-truth correctness labels.
These are computed without groupwise normalization.
We also conduct ablations on key knobs: group size k, inclusion of curvature terms, choice
of normalization, and presence of KL. Our implementation logs all hyperparameters, ran-
dom seeds, and hardware details, ensuring reproducibility.

4.8 Complexity and Scaling

Let B be prompts per iteration, k responses per prompt, T average response length,
L layers, and d hidden size. Rollout cost is O(BkT) forward tokens. Computing the
CoE reward adds O(BkTLd) vector operations (mainly norms and differences), which

20

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

are bandwidth-friendly and parallelizable. Because no critic is trained, backpropagation
is limited to log-prob terms, so overall runtime is dominated by rollout throughput and
FSDP communication.

21

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

5 Experiments

This chapter presents the experimental setup used to evaluate our proposed approach. We
first detail the hardware and infrastructure on which experiments were executed, followed
by the key hyperparameters chosen for training. Subsequently, we describe the models
under study and the datasets employed, including training and evaluation splits. We then
outline the baselines against which our method is compared and introduce the evaluation
metrics used to assess performance. Together, these components provide a reproducible
and transparent foundation for the subsequent Results chapter, where we analyze and
interpret the outcomes of these experiments.

5.1 Hardware and Infrastructure

Experiments were conducted on three different high-performance computing (HPC) sys-
tems: LRZ [24], Horeka [25], and FAU [26]. Each system provided multi-GPU nodes
with large memory capacity and high-speed interconnects, scheduled via the SLURM work-
load manager.
The following configurations were used for training runs:

• LRZ (Leibniz Supercomputing Centre): Partition mcml-hgx-h100-94x4, equipped
with 4× NVIDIA H100 (80GB) GPUs per node, 768GB of RAM, and a maxi-
mum job runtime of 48 hours.

• Horeka (KIT, Karlsruhe): Two partitions were employed:

– accelerated-h100 with 4×NVIDIA H100 (80GB)GPUs per node, 768GB
RAM, and 48-hour maximum runtime.

– accelerated with 4× NVIDIA A100 (40GB) GPUs per node, 512GB
RAM, and 48-hour maximum runtime.

• FAU (Friedrich-Alexander-Universität Erlangen–Nürnberg): Partition a100,
equipped with 8× NVIDIA A100 (40GB) GPUs per node, either 1TB or 2TB
of RAM, and a maximum runtime of 24 hours.

Checkpoints and logs were stored on distributed file systems (DSS/Lustre) accessible
across nodes. Experiment tracking was managed with Weights & Biases (W&B) and
SwanLab, which recorded hyperparameters, metrics, and system diagnostics. This enabled
reproducibility and resumption of experiments across cluster sessions.
Overall, this combination of clusters provided sufficient flexibility to run large-scale train-
ing with Qwen2.5 models (1.5B, 3B, 7B), balancing memory, compute throughput, and
runtime constraints depending on the experimental setup.

5.2 Hyperparameters

All experiments used a consistent set of hyperparameters across model sizes (Qwen2.5-
1.5B, 3B, and 7B). Training was conducted on the math12k dataset, with the train split
for optimization and the test split for evaluation. Each sample consists of a prompt (the

22

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

math problem) and a response (the model’s solution). To ensure feasibility across different
model sizes, prompts were limited to a maximum of 2048 tokens, while responses were also
truncated at 2048 tokens. This distinction is important: the prompt length constrains the
input sequence, whereas the response length constrains the maximum number of tokens
generated by the model.
Rollout generation was performed with a batch size of 512, while validation used a batch
size of 1024. A fixed random seed (1) ensured reproducibility, and prompts were shuffled
during training.
Optimization employed Group Relative Policy Optimization (GRPO) with KL-regularization.
The KL coefficient was set to 10−2 using a low-variance penalty, ensuring that the actor
policy remained close to the reference model. The AdamW optimizer was used with a
learning rate of 1× 10−6, weight decay of 1× 10−2, and gradient clipping at 1.0. Training
was carried out for 15 epochs.
For each prompt, the actor generated n = 5 responses during training, using nucleus
sampling with p = 0.99 and temperature T = 1.0. Evaluation employed deterministic
decoding with a single response (n = 1) and a reduced temperature of T = 0.5. Rewards
were computed via a batch reward function that directly compared generated answers
against references.
The most important hyperparameters are summarized in Table 1. For completeness, the
full configuration file is included in Listing 1 (see Appendix A.1).

Table 1: Key hyperparameters used in all experiments.

Category Value

Dataset math12k (train/test splits)
Prompt length (max) 2048 tokens (input problem)
Response length (max) 2048 tokens (generated solution)
Rollout batch size 512
Validation batch size 1024
Random seed 1

Algorithm GRPO (Group Relative Policy Optimization)
KL coefficient 1.0× 10−2 (low-variance)
Disable KL false

Optimizer AdamW
Learning rate 1.0× 10−6

Weight decay 1.0× 10−2

Gradient clipping 1.0
Epochs 15

Rollout n 5 responses per prompt
Sampling Nucleus (p = 0.99), T = 1.0
Validation rollout n 1 response per prompt
Validation temperature T = 0.5

23

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

5.3 Models

All experiments were conducted using models from the Qwen2.5 family, an open-source
suite of large language models released by Alibaba Cloud [27]. We specifically used the
instruction-tuned (Instruct) variants, which differ from their base counterparts in the
following way:

• Base models are pretrained autoregressive transformers trained on massive text
corpora to predict the next token. While they provide strong language modeling
capabilities, they are not optimized to follow human instructions directly.

• Instruct models are further fine-tuned on curated instruction–response datasets.
This post-training step improves alignment with human prompts, enabling the mod-
els to follow instructions more reliably, generate structured solutions, and perform
better in reasoning benchmarks.

We chose the Instruct variants because our study focuses on reinforcement learning
fine-tuning (RLFT) for reasoning tasks, where starting from an instruction-aligned model
provides a stronger baseline and reduces the reliance on supervised fine-tuning stages.
The following Qwen2.5-Instruct models were used:

• Qwen2.5-1.5B-Instruct [28]: 1.5 billion parameters, context length of up to 32k
tokens. This lightweight model served as a baseline for testing training configura-
tions with reduced compute cost.

• Qwen2.5-3B-Instruct [29]: 3 billion parameters, 32k token context length. It rep-
resents a mid-sized trade-off between computational efficiency and reasoning ability.

• Qwen2.5-7B-Instruct [30]: 7 billion parameters, 32k token context length. As the
largest model used in this thesis, it required multi-GPU setups but demonstrated
the strongest reasoning performance.

All three models are decoder-only transformers, instruction-tuned for better alignment.
In this thesis, they were fine-tuned with Group Relative Policy Optimization (GRPO)
using both intrinsic and external reward signals, enabling a systematic comparison across
different parameter scales.

5.4 Dataset

We conduct all experiments on the Math12k dataset [31], an open-source collection of
mathematical word problems released together with the EasyR1 framework. Math12k
comprises 12,500 problem–solution pairs, split into train (12,000) and test (500)
examples; this split is used consistently throughout this work.
According to its dataset card, Math12k is a conversion of the math splits from OpenAI’s
PRM800K repository, created via a lightweight script that extracts only the problem and
answer fields and pushes them to Hugging Face; the resulting splits are precisely 12k/500.
The dataset card lists the license as MIT. We also note that EasyR1’s documentation
references Math12k as the canonical text dataset example for the framework.
Each record contains:

24

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

• problem — the textual math question presented to the model,

• answer — the ground-truth solution string,

• images — optional image inputs for multimodal extensions (unused here).

Table 2 shows a representative entry.

Table 2: Example entry from the Math12k dataset.

Column Content

problem If a box contains 12 apples and 3 are removed, how many
apples remain?

answer 9
images [] (empty; text-only example)

Prompt formatting. To standardize inputs across training and evaluation, each problem
is rendered through a Jinja2 template [32]. We bypass any model-provided chat template
(override chat template = null) and inject the dataset field into content. The exact
template used in this work is:

{{ content | trim }}

You FIRST think about the reasoning process as an internal

monologue and then

provide the final answer. The reasoning process MUST BE enclosed

within <think > </think > tags.

The final answer MUST BE put in \boxed {}.

Here, content receives the raw problem text (trimmed). The instructions enforce a two-
part output: (i) an internal reasoning trace delimited by <think>. . . </think> (ignored
by evaluators), and (ii) a canonical final answer inside · . During scoring, only the
boxed expression is parsed and compared to the ground truth (e.g., with SymPy-based
equivalence checks [33]); generations without a valid \boxed{...} are marked incorrect.
This scheme yields reproducible prompts and a robust extraction rule for evaluation and
reward computation.
The dataset is large yet tractable for RL, diverse in problem types requiring multi-step
reasoning, natively compatible with EasyR1, and widely adopted in reasoning-alignment
work, enabling comparisons with prior art.

5.5 Baselines

To evaluate the effectiveness of our proposed intrinsic reward method, we established a
set of baselines derived from the Qwen2.5 model family. Rather than relying on external
results, we deliberately reproduced the training of baseline models ourselves in order to
validate the experimental pipeline and to convince ourselves that performance differences
observed later are genuine and not artifacts of mismatched setups. This ensures that all
comparisons are fair, consistent, and reproducible within the scope of this thesis.

25

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

• Instruction-tuned base models: The original Qwen2.5-Instruct checkpoints (1.5B,
3B, and 7B parameters), released by Alibaba Cloud [27, 28, 29, 30]. These mod-
els have undergone supervised instruction tuning but no reinforcement learning.
They serve as the natural starting point for assessing the benefits of further RL
fine-tuning.

• GRPO-trained models on Math12k: The same Qwen2.5-Instruct checkpoints,
additionally fine-tuned with Group Relative Policy Optimization (GRPO) on the
Math12k dataset. These runs were executed by us using the hyperparameters de-
scribed in Section 5.1, with n = 5 rollouts per prompt and KL-regularization en-
abled. By training these models ourselves, we establish a controlled baseline that
isolates the effect of reinforcement learning from larger-scale pretraining or third-
party implementation details.

Table 3 summarizes the performance of these baselines across three benchmarks: the
Math12k test split, and the widely used GSM8K benchmark in both flexible extract and
strict math evaluation modes. The flexible evaluation counts semantically equivalent
expressions as correct, while the strict setting requires exact symbolic equivalence.

Table 3: Baseline performance of Qwen2.5-Instruct models and their GRPO-trained vari-
ants with external reward on Math12k and GSM8K benchmarks. All GRPO results were
reproduced within this thesis to ensure comparability and consistency.

Model Math12k test GSM8K-flexible GSM8K-strict

Qwen2.5-1.5B-Instruct (base) 0.500 0.5800 0.1200
Qwen2.5-1.5B-Instruct (external) 0.600 0.6035 0.1926

Qwen2.5-3B-Instruct (base) 0.642 0.6100 0.0015
Qwen2.5-3B-Instruct (external) 0.698 0.5853 0.0038

Qwen2.5-7B-Instruct (base) 0.732 0.7741 0.3685
Qwen2.5-7B-Instruct (external) 0.7994 0.8226 0.8097

5.6 Evaluation Metrics

The effectiveness of reinforcement learning fine-tuning (RLFT) was assessed using both
task-level metrics and reward–signal diagnostics. Together, these metrics allow us
to evaluate not only end-task performance but also the validity of the proposed intrinsic
reward.
Task accuracy. On both Math12k [31] and GSM8K, we report the fraction of problems
for which the model output matches the ground-truth answer. For GSM8K, we consider
two evaluation modes:

• Flexible extract: counts predictions correct if the extracted numerical answer matches,
allowing for variations in formatting.

• Strict math: requires exact symbolic equivalence, evaluated with SymPy [33].

26

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Reward–correctness alignment. To assess whether the proposed internal reward sig-
nal (d1+d2 hidden-state dynamics) is informative, we log intrinsic reward values for each
rollout alongside correctness labels. We then compute standard classification metrics,
treating the d1+d2 score as a predictor of correctness:

• AUROC (Area Under the Receiver Operating Characteristic curve): quan-
tifies the probability that a randomly chosen correct rollout is assigned a higher
d1+d2 score than a randomly chosen incorrect rollout. AUROC is insensitive to the
absolute scale of the score and provides a global measure of separability. A value of
0.5 indicates random guessing, while 1.0 indicates perfect discrimination.

• AUPR (Area Under the Precision–Recall curve): evaluates the trade-off be-
tween precision (fraction of predicted correct rollouts that are truly correct) and
recall (fraction of all correct rollouts that are identified). AUPR is especially infor-
mative in imbalanced settings where incorrect rollouts dominate, since it focuses on
the model’s ability to concentrate correctness among the highest-scoring samples.

• FPR@95 (False Positive Rate at 95% True Positive Rate): measures how
many incorrect rollouts are included among the highest-scoring rollouts once 95%
of correct rollouts are recovered. This metric is widely used in out-of-distribution
detection and safety-critical evaluation, since it reflects the cost of misclassifying
errors as “highly confident” outputs.

These metrics collectively quantify whether higher intrinsic scores correspond to a higher
probability of correctness. AUROC provides a global view of discriminative power, AUPR
captures performance under skewed class distributions, and FPR@95 emphasizes reliabil-
ity under high-recall operating points. Using all three ensures that our evaluation of the
intrinsic reward is robust to different practical perspectives on what “good correlation”
means.
Training dynamics. We track KL divergence between the actor and reference model,
log-probabilities of generated tokens, and rollout statistics (batch size, length, number of
valid \boxed{} answers). These provide insight into stability and convergence.
Internal reward diagnostics. For selected runs, we additionally conduct a ranking
analysis: with batch size 512 and rollout factor 8 (yielding 4096 rollouts per step), re-
sponses are sorted by their d1+d2 score. We then examine whether higher-ranked re-
sponses are more likely to be correct. This diagnostic is presented in Section 6.1 (Results).
Together, these metrics provide a comprehensive view of both task-level performance and
the informativeness of the proposed intrinsic reward.

27

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

6 Results

This chapter presents the empirical findings of our study. Building on the experimental
setup described in Chapter 5, we now report the performance of the proposed intrinsic-
reward method and compare it against baseline models. The results are organized to
highlight both task-level improvements and internal reward diagnostics. We begin by an-
alyzing performance across different model sizes on Math12k and GSM8K, followed by an
investigation of the correlation between the intrinsic reward signal and rollout correctness.
We then examine training dynamics and efficiency, and finally summarize the key insights.
Together, these results provide evidence for the effectiveness of hidden-state–based intrin-
sic rewards in reinforcement learning fine-tuning of large language models.

6.1 Reward–Correctness Alignment

A central question in this thesis is whether the intrinsic reward signal derived from hidden-
state dynamics (d1 and d2 values, as introduced in Section 3.3) is actually meaningful
with respect to task performance. If the internal score assigned to a rollout is not cor-
related with its correctness, then training with such a signal would likely be ineffective.
Conversely, if higher internal scores consistently correspond to more accurate solutions,
this would provide strong evidence that hidden-state dynamics capture useful information
about reasoning quality.
To investigate this, we first conducted a controlled experiment during standard GRPO
training with an external correctness-based reward. We selected the Qwen2.5
models as evaluation candidates and collected metadata at step 23 of epoch 1 on the
Math12k dataset. Although optimization was driven solely by the correctness-based re-
ward, we instrumented the system to additionally compute d1 and d2 dynamics and log
them alongside correctness for each rollout (see Listing 2 in the Appendix for an exam-
ple entry). Crucially, these intrinsic signals did not affect training—they served purely
as observational probes, allowing us to test whether they encode information about cor-
rectness independently of optimization. Correctness was determined by extracting the
boxed final answer and comparing it against reference solutions using symbolic equiva-
lence (SymPy [33]), ensuring that algebraically equivalent answers were accepted while
formatting artifacts were ignored.
Note that while GRPO training itself used n = 5 rollouts per prompt (see Section 5.1),
metadata collection employed n = 8 rollouts. This choice increased the diversity of
responses available for analysis, without affecting the training procedure.
We then ranked all rollouts by their d1+d2 score. If hidden-state dynamics carry mean-
ingful signals, responses with higher d1+d2 values should be more likely correct than those
with lower values. As shown in Figures 6–8, this hypothesis held: correct rollouts clus-
tered toward the top of the ranking, whereas incorrect rollouts dominated the lower tail.
Quantitatively, AUROC and AUPR values (Table 4) confirmed that d1+d2 is predictive
of correctness, with the strongest correlation in the 7B model. These results establish
that hidden-state dynamics contain non-trivial, predictive information about reasoning
quality when observed in an external-reward training regime.

28

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Figure 6: Qwen2.5-7B-Instruct rollouts collected at step 23 of epoch 1 under external
correctness-based reward. Batch size: 512, rollout factor: 8, yielding 4096 rollouts.

Figure 7: Qwen2.5-3B-Instruct rollouts collected at step 23 of epoch 1 under external
correctness-based reward. Batch size: 512, rollout factor: 8, yielding 4096 rollouts.

29

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Figure 8: Qwen2.5-1.5B-Instruct rollouts collected at step 23 of epoch 1 under external
correctness-based reward. Batch size: 512, rollout factor: 8, yielding 4096 rollouts.

Table 4: Reward–correctness alignment under external reward at step 23 of epoch 1. Val-
ues report AUROC, AUPR, and FPR@95 computed over 4096 rollouts. Arrows indicate
whether higher or lower values are preferable.

Model AUROC ↑ AUPR ↑ FPR@95 ↓

Qwen2.5-1.5B-Instruct (external) 0.72 0.69 0.79
Qwen2.5-3B-Instruct (external) 0.62 0.69 0.85
Qwen2.5-7B-Instruct (external) 0.78 0.68 0.74

Having validated the observational signal, we next turned to a more demanding test:
training directly with d1+d2 as the reward. Here the intrinsic score fully replaced
the external correctness-based reward, meaning that optimization was guided exclusively
by hidden-state dynamics. We again trained all three Qwen2.5 models for one epoch
on Math12k, and collected metadata at step 23. Figures 9–11 show the ranked rollouts
after this intrinsic-reward training. For the smaller 1.5B and 3B models, the correlation
between score and correctness largely collapsed: correct and incorrect rollouts appeared
intermixed across the ranking, and quantitative metrics (Table 5) hovered around chance
level. Only the 7B model preserved a meaningful signal, with AUROC 0.81 and AUPR
0.92, though optimization still failed to yield clear accuracy gains.

30

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Figure 9: Qwen2.5-1.5B-Instruct after 1 epoch of training with d1+d2 as reward. Batch
size: 512, rollout factor: 8, yielding 4096 rollouts. Correct rollouts are scattered through-
out the ranking, showing weak correlation.

Figure 10: Qwen2.5-3B-Instruct after 1 epoch of training with d1+d2 as reward. Batch
size: 512, rollout factor: 8, yielding 4096 rollouts. Correlation with correctness is minimal.

31

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Figure 11: Qwen2.5-7B-Instruct after 1 epoch of training with d1+d2 as reward. Batch
size: 512, rollout factor: 8, yielding 4096 rollouts. A stronger correlation emerges, but
optimization remains unstable.

Table 5: Reward–correctness alignment when d1+d2 was used as the internal reward at
step 23 of epoch 1. Values report AUROC, AUPR, and FPR@95 over 4096 rollouts.

Model AUROC ↑ AUPR ↑ FPR@95 ↓

Qwen2.5-1.5B-Instruct (internal) 0.51 0.08 0.93
Qwen2.5-3B-Instruct (internal) 0.49 0.40 0.91
Qwen2.5-7B-Instruct (internal) 0.59 0.09 0.97

Taken together, these results reveal a nuanced picture. When observed passively in an
external-reward regime, hidden-state dynamics correlate reliably with correctness across
model scales. However, when used directly as the optimization signal, their effectiveness
depends heavily on scale: smaller models fail to exploit the signal, while the 7B model
shows partial but unstable gains. This divergence highlights the complexity of align-
ing hidden-state dynamics with learning, and suggests that while the signal is real and
predictive, its direct use as a reward is not sufficient for stable fine-tuning.

6.2 Task-Level Performance with Intrinsic Reward

This section presents the results of reinforcement learning fine-tuning (RLFT) when train-
ing Qwen2.5-Instruct models of different sizes with intrinsic rewards (d1 + d2) compared
to external correctness-based rewards. The experiments cover three model scales: 1.5B,
3B, and 7B parameters. For each model, we plot the trajectory of the intrinsic reward
signal (d1+d2), the accuracy reward, and the format reward during training, and compare
final task-level results against both base and external reward fine-tuned baselines.
Training the 1.5B model with internal reward showed a consistent rise in the intrin-
sic signal d1 + d2 during training (Figure 12), suggesting that the optimization process

32

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

reinforced hidden-state dynamics. However, this gain did not translate into task-level
correctness: the accuracy reward quickly collapsed to near-zero after a short increase at
the beginning. The format reward also rapidly declined, stabilizing at negligible values.
Due to the lack of progress, this run was stopped after 55 steps (instead of the full 345),
both to preserve computational resources and because the trajectory indicated that fur-
ther training was unlikely to yield improvements. Task-level evaluation (Table 6) confirms
this: the internal reward model performed substantially worse than both the base model
and the external reward baseline.

Figure 12: Qwen2.5-1.5B-Instruct trained with internal reward: evolution of d1+d2 (top-
left), accuracy reward (top-right), and format reward (bottom).

The 3B model presented a slightly more nuanced picture. The d1 + d2 score steadily
increased and stabilized at a higher plateau than its initialization (Figure 13), showing
that the model could optimize the intrinsic objective. Nevertheless, the accuracy reward
consistently decreased and remained low throughout training, similar to the 1.5B case.
The format reward fluctuated around small values without a clear upward trend. Given
the lack of improvement, this experiment was stopped after 115 steps (instead of the full
345). Evaluation again shows that the intrinsic reward model underperformed both the
base and external reward models across all benchmarks.

33

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Figure 13: Qwen2.5-3B-Instruct trained with internal reward: evolution of d1 + d2 (top-
left), accuracy reward (top-right), and format reward (bottom).

For the 7B model, the divergence between intrinsic and external signals became most
pronounced. The d1 + d2 reward exhibited a smooth and stable increase, reaching sig-
nificantly higher levels compared to the smaller models (Figure 14). Accuracy reward
initially rose above 0.5 but quickly decayed toward zero as training progressed. Similarly,
the format reward showed an early spike but then collapsed to negligible values. Unlike
the smaller models, the 7B run was completed for the full 345 steps, to fully assess
whether scale alone could make intrinsic-only training viable. While the task-level results
(Table 6) show slightly better performance than the smaller intrinsic runs, the model still
fails to match the external reward baseline. This indicates that, even at larger scale, opti-
mizing hidden-state–based objectives alone does not guarantee correctness or formatting
quality.

34

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Figure 14: Qwen2.5-7B-Instruct trained with internal reward: evolution of d1 + d2 (top-
left), accuracy reward (top-right), and format reward (bottom).

Across all scales, the d1 + d2 intrinsic signal was consistently optimizable, with higher-
capacity models showing smoother and stronger growth. However, accuracy and format
rewards consistently degraded when trained under intrinsic reward alone. These find-
ings underscore the central limitation: while hidden-state dynamics encode valuable di-
agnostic information, their raw use as reinforcement signals fails to yield performance
improvements.
An additional factor behind the observed degradation may lie in formatting errors.
EasyR1’s reward pipeline relies heavily on correct formatting (boxed answers and <think>

tags) to assign accuracy labels. When training with internal rewards only, the model has
no explicit incentive to preserve formatting and may therefore generate outputs that op-
timize the hidden-state trajectory but cannot be parsed as correct by the external grader.
This explains why the d1 + d2 signal continues to improve, while accuracy and format
scores collapse: the model learns to exploit the internal objective without producing valid
task outputs.

To highlight this contrast, Table 6 reports the task-level results for each model under
three settings: the base model (pretrained without RLFT), external reward training
(GRPO with correctness + format reward, weighted as 0.9 · accuracy + 0.1 · format), and
intrinsic reward training (with d1+d2 only). All values are reported with two decimals
for consistency.

35

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

Table 6: Task-level performance of Qwen2.5-Instruct models under different training
regimes. Intrinsic runs were stopped early for 1.5B (55 steps) and 3B (115 steps) due
to lack of improvement, while the 7B run was trained for the full 345 steps. Results are
reported with two decimals.

Model / Training Math12k test GSM8K-flexible GSM8K-strict

Qwen2.5-1.5B-Instruct (base) 0.50 0.58 0.12
Qwen2.5-1.5B-Instruct (external) 0.60 0.60 0.19
Qwen2.5-1.5B-Instruct (internal) 0.00 0.53 0.32

Qwen2.5-3B-Instruct (base) 0.64 0.61 0.00
Qwen2.5-3B-Instruct (external) 0.70 0.59 0.00
Qwen2.5-3B-Instruct (internal) 0.00 0.13 0.00

Qwen2.5-7B-Instruct (base) 0.73 0.77 0.37
Qwen2.5-7B-Instruct (external) 0.80 0.82 0.81
Qwen2.5-7B-Instruct (internal) 0.04 0.76 0.63

Overall, the results emphasize a paradox: intrinsic signals like d1+d2 are readily optimiz-
able and correlate with correctness in observational studies, yet when used in isolation they
do not reliably improve task accuracy. This mismatch may partly stem from EasyR1’s
reliance on strict formatting, which internal rewards do not enforce. External reward
training remains necessary to anchor correctness, while intrinsic rewards may serve as
complementary diagnostics or auxiliary objectives for future hybrid strategies.

36

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

7 Conclusion and Future Work

This thesis set out to investigate the efficiency of reinforcement learning fine-tuning
(RLFT) for large language models, with a specific focus on the use of hidden-state dy-
namics as an intrinsic reward signal. In recent years, reinforcement learning from human
feedback (RLHF) and related methods have become central to aligning large language
models with human preferences. However, these methods are computationally expensive,
rely on high-quality external feedback, and suffer from inefficiencies that limit their scal-
ability. Against this backdrop, we explored the hypothesis that internal signals already
present in the model’s hidden-state transitions could serve as a cheaper and more efficient
proxy reward.
The first part of the work established a solid experimental foundation. We implemented re-
inforcement learning experiments on multiple HPC clusters, using Qwen2.5-Instruct mod-
els of different scales (1.5B, 3B, and 7B parameters). Our experimental setup included de-
tailed hyperparameter management, careful dataset preparation (Math12k and GSM8K),
and robust baselines established through GRPO training with external correctness-based
reward. In this external setup, rewards were computed as a weighted combination of
accuracy (90%) and format (10%), ensuring that both the correctness of the final an-
swer and its parseability were preserved. These steps ensured that the experiments were
reproducible, well-controlled, and grounded in existing benchmarks.
We then turned to the central research question: do hidden-state dynamics, in particular
the d1 and d2 signals extracted from intermediate activations, correlate with task per-
formance? Through a detailed analysis of metadata logged during GRPO training, we
demonstrated that higher d1+d2 values were indeed associated with a higher probability
of correctness. This alignment was visible both in visual analyses of ranked rollouts and
in quantitative metrics such as AUROC, AUPR, and FPR@95. These findings provided
strong evidence that hidden-state dynamics encode non-trivial information about reason-
ing quality. Importantly, these results were consistent across model scales in the metadata
analysis, with the larger Qwen2.5-7B-Instruct model showing the strongest correlation.
However, when applied as a reward signal for training, even the 7B model did not reach
stable convergence: intrinsic signals kept rising smoothly but without translating into
stable task-level improvements.
When we attempted to replace the external reward with the intrinsic d1+d2 reward
in GRPO training, the results were less encouraging. Despite the observed correlations,
task-level accuracy on Math12k and GSM8K did not improve. In some cases, performance
even decreased. This highlights a key lesson: correlation between an internal signal and
correctness does not guarantee that the signal can serve as a useful training objective. The
intrinsic reward signal, while promising as a diagnostic, was not sufficient in its raw form
to drive meaningful learning progress when used alone. One additional contributing factor
was formatting: since EasyR1 relies on strict output formats (boxed answers and <think>

tags) to assign correctness, models trained solely on intrinsic signals often abandoned these
conventions, further reducing measured accuracy. This negative result is an important
contribution, as it sheds light on the limitations of naive intrinsic reward approaches and
clarifies the gap between observational alignment and optimization.
In summary, the thesis achieved several important goals:

37

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

• Established a reproducible experimental pipeline for RLFT on Qwen2.5-Instruct
models.

• Demonstrated that hidden-state dynamics (d1+d2) correlate with rollout correct-
ness.

• Validated these correlations through both visual inspection and quantitative metrics.

• Tested the feasibility of using intrinsic rewards directly for training, and identified
their limitations in improving task-level performance.

Although the experiments did not show clear gains when replacing external rewards with
intrinsic signals, the findings point toward several avenues for future work. If more time
and resources were available, the next steps would focus on making the intrinsic signal
more usable for training through reward shaping.
One promising approach is to exploit the ranking structure of d1+d2 scores. In the
current formulation, all rollouts received continuous values that were directly used as
rewards. However, rollouts in the middle of the distribution often provide diluted or
noisy information, since they neither represent the clearly correct nor the clearly incorrect
behaviors. Instead of using the full distribution, future work could focus on the extremes:
the top-x percentile of rollouts with the highest d1+d2 scores, and the bottom-y percentile
with the lowest scores. Rollouts in between could be ignored, reducing noise in the training
signal.
In addition, discretizing the reward could help stabilize optimization. Rather than as-
signing small continuous differences, the system could map the top-x percentile of rollouts
to a reward of 1.0 and the bottom-y percentile to 0.0. This binary scheme would create
a clearer separation between desirable and undesirable outputs. Such shaping strategies
have been shown in other reinforcement learning domains to reduce variance and help
the policy focus on the most informative examples. Applied here, they could turn the
observed correlation between d1+d2 and correctness into a stronger driver of learning.
Another direction is to combine intrinsic and external rewards. While the d1+d2 sig-
nal alone was insufficient, it may still carry complementary information that could be
valuable when balanced against correctness-based signals. A hybrid reward could, for
instance, encourage exploration of reasoning strategies (via d1+d2) while maintaining
fidelity to ground truth answers (via correctness reward). This kind of multi-objective
reward shaping may bridge the gap between correlation and utility.
Finally, future research should also consider scaling both the dataset and the model. The
Math12k dataset, while convenient and directly compatible with EasyR1, is small com-
pared to the complexity of real-world reasoning tasks. Larger datasets with more diverse
reasoning problems may provide stronger training signals and allow intrinsic rewards to
demonstrate their potential. Similarly, training with larger models beyond 7B parameters
could reveal whether the signal becomes more actionable at scale.
A further promising line of research involves data filtering. Since reinforcement learning
fine-tuning is highly data-hungry, strategies to achieve comparable or even better accuracy
with fewer training samples would be of great practical importance. One approach is to
selectively filter prompts and rollouts before training, prioritizing those that provide the
most informative signal. For instance, prompts where the model’s hidden-state dynamics

38

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

diverge sharply could be oversampled, while uninformative or redundant cases could be
downsampled. In this way, the same—or higher—performance might be achieved with
a fraction of the data, reducing training cost and increasing efficiency. Such filtering
could be combined with percentile-based reward shaping, ensuring that only the most
useful training examples are reinforced. This approach directly addresses the inefficiencies
documented in this thesis and offers a practical path toward less data-hungry alignment
methods.
Overall, this thesis has taken a step toward understanding the role of hidden-state dynam-
ics in reinforcement learning fine-tuning for large language models. The findings highlight
both promise and limitations: the d1+d2 signals clearly correlate with correctness but do
not, in their raw form, translate into performance improvements when used as a reward.
This dual outcome provides clarity for the field. It shows where current approaches fall
short, while also pointing to concrete strategies—such as reward shaping, discrete reward
assignment, hybrid signals, and data filtering—that could unlock the potential of intrin-
sic rewards in the future. In this sense, the work not only documents the challenges of
efficient RLFT but also lays the groundwork for the next generation of methods that aim
to make alignment cheaper, more scalable, and more robust.

39

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

A Appendix

A.1 Training Hyperparameters

The following listing shows the main hyperparameter configuration used for training the
Qwen2.5-Instruct models with GRPO and intrinsic rewards (magnitude + acceleration of
hidden-state dynamics). As shown in Listing 1, this configuration defines dataset splits,
rollout parameters, optimization settings, and metadata generation frequency. It served
as the basis for all reinforcement learning experiments described in Chapter 5.

data:

train_files: hiyouga/math12k@train

val_files: hiyouga/math12k@test

rollout_batch_size: 512

val_batch_size: 1024

max_prompt_length: 2048

max_response_length: 2048

algorithm:

adv_estimator: grpo

kl_coef: 1.0e-2

disable_kl: false

use_kl_loss: true

worker:

actor:

global_batch_size: 128

micro_batch_size_per_device_for_update: 4

optim:

lr: 1.0e-6

weight_decay: 1.0e-2

strategy: adamw

rollout:

n: 5 # training rollouts

temperature: 1.0

top_p: 0.99

reward:

reward_strategy: "d1_plus_d2"

trainer:

total_epochs: 15

val_freq: 5

save_freq: 5

save_metadata: true

metadata_save_freq: 1

Listing 1: Excerpt of training configuration

V

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

A.2 Example Metadata Entry

During training, metadata was stored in JSON format. Each entry corresponds to one
prompt, with multiple responses (rollouts), rewards, and correctness labels. These meta-
data entries were the basis for the reward–correctness alignment analyses in Chapter 6.
An excerpt is provided in Listing 2, showing a single prompt with eight responses from
the Qwen2.5-3B-Instruct model at step 1.

1 {

2 "step": 1,

3 "prompt_index ": 0,

4 "rollout_n ": 8,

5 "prompt ": {

6 "text": "Pizzas are sized by diameter ... Provide reasoning

in <think >... </think > and final answer in \\ boxed {}.",

7 "question ": "Pizzas are sized by diameter. What percent

increase in area results ..."

8 },

9 "ground_truth ": { "text": "44%", "available ": true },

10 "responses ": [

11 {

12 "response_index ": 0,

13 "text": "... \\boxed{44}",

14 "rewards ": {

15 "overall ": 0.655,

16 "d1_mean": 0.307,

17 "d2_mean": 0.348,

18 "angular_coe ": 0.173,

19 "combined_coe ": 0.287,

20 "accuracy ": 1.0,

21 "format ": 1.0

22 }

23 },

24 {

25 "response_index ": 1,

26 "text": "... \\boxed{44%}",

27 "rewards ": {

28 "overall ": 0.757,

29 "d1_mean": 0.353,

30 "d2_mean": 0.404,

31 "angular_coe ": 0.177,

32 "combined_coe ": 0.329,

33 "accuracy ": 1.0,

34 "format ": 1.0

35 }

36 },

37 ...

38],

39 "model_info ": {

VI

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

40 "model_name ": "Qwen2.5-3B-Instruct"

41 }

42 }

Listing 2: Excerpt from metadata.json for Qwen2.5-3B-Instruct, step 1 with 8 rollouts.

VII

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

B Electronic appendix

Data, code repository, training runs, trained models and figures are provided in electronic
form.

VIII

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

List of Figures

1 Transformer architecture with encoder (left, red) and decoder (right, blue),
adapted from [1]. 5

2 RLHF pipeline: a pretrained model is adapted via SFT, a reward model is
trained from human preferences, and the policy is optimized with PPO/-
GRPO under a KL constraint to a reference model. 11

3 Conceptual comparison of PPO and GRPO. PPO uses an actor–critic
setup where a value function (critic) estimates Vϕ(x) and advantages A =
r−V . GRPO removes the critic and uses group-relative advantages A(i) =
r(i) − r̄ from multiple responses to the same prompt. Both use a clipped
update with a KL penalty to a reference model. 13

4 Internal reward with multiple responses. The actor generates G responses
per prompt, hidden states are converted into per-response intrinsic rewards,
which are normalized and turned into relative advantages for a GRPO
update. External reward models are not used. 15

5 Technology stack used in this project, layered from core training compo-
nents down to runtime, data tooling, observability, and deployment. 17

6 Qwen2.5-7B-Instruct rollouts collected at step 23 of epoch 1 under external
correctness-based reward. Batch size: 512, rollout factor: 8, yielding 4096
rollouts. 29

7 Qwen2.5-3B-Instruct rollouts collected at step 23 of epoch 1 under external
correctness-based reward. Batch size: 512, rollout factor: 8, yielding 4096
rollouts. 29

8 Qwen2.5-1.5B-Instruct rollouts collected at step 23 of epoch 1 under exter-
nal correctness-based reward. Batch size: 512, rollout factor: 8, yielding
4096 rollouts. 30

9 Qwen2.5-1.5B-Instruct after 1 epoch of training with d1+d2 as reward.
Batch size: 512, rollout factor: 8, yielding 4096 rollouts. Correct rollouts
are scattered throughout the ranking, showing weak correlation. 31

10 Qwen2.5-3B-Instruct after 1 epoch of training with d1+d2 as reward. Batch
size: 512, rollout factor: 8, yielding 4096 rollouts. Correlation with cor-
rectness is minimal. 31

11 Qwen2.5-7B-Instruct after 1 epoch of training with d1+d2 as reward. Batch
size: 512, rollout factor: 8, yielding 4096 rollouts. A stronger correlation
emerges, but optimization remains unstable. 32

12 Qwen2.5-1.5B-Instruct trained with internal reward: evolution of d1 + d2
(top-left), accuracy reward (top-right), and format reward (bottom). 33

13 Qwen2.5-3B-Instruct trained with internal reward: evolution of d1 + d2
(top-left), accuracy reward (top-right), and format reward (bottom). 34

14 Qwen2.5-7B-Instruct trained with internal reward: evolution of d1 + d2
(top-left), accuracy reward (top-right), and format reward (bottom). 35

IX

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

List of Tables

1 Key hyperparameters used in all experiments. 23
2 Example entry from the Math12k dataset. 25
3 Baseline performance of Qwen2.5-Instruct models and their GRPO-trained

variants with external reward on Math12k and GSM8K benchmarks. All
GRPO results were reproduced within this thesis to ensure comparability
and consistency. 26

4 Reward–correctness alignment under external reward at step 23 of epoch 1.
Values report AUROC, AUPR, and FPR@95 computed over 4096 rollouts.
Arrows indicate whether higher or lower values are preferable. 30

5 Reward–correctness alignment when d1+d2 was used as the internal reward
at step 23 of epoch 1. Values report AUROC, AUPR, and FPR@95 over
4096 rollouts. 32

6 Task-level performance of Qwen2.5-Instruct models under different training
regimes. Intrinsic runs were stopped early for 1.5B (55 steps) and 3B (115
steps) due to lack of improvement, while the 7B run was trained for the
full 345 steps. Results are reported with two decimals. 36

X

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems (NeurIPS), 2017, pp. 5998–6008.

[2] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller,
M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, “Train-
ing language models to follow instructions with human feedback,” in Advances in
Neural Information Processing Systems (NeurIPS), vol. 35, 2022, pp. 27 730–27 744.

[3] G. Cui, Y. Gu, Y. Zhang, Y. Dong, and J. Tang, “Self-rewarding language mod-
els,” arXiv preprint arXiv:2501.00001, 2025.

[4] F. Luo, T. Zhang, Z. Liu, and M. Sun, “Intrinsic rewards for large language mod-
els,” arXiv preprint arXiv:2502.00002, 2025.

[5] J. Bai, Y. Dong, L. Hou, N. Ding, Y. Gu, Z. Liu, and M. Sun, “Qwen: Open-
source large language models by alibaba cloud,” arXiv preprint arXiv:2307.00075,
2023.

[6] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[8] H. Robbins and S. Monro, “A stochastic approximation method,” Annals of Math-
ematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[9] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neu-
ral text degeneration,” in International Conference on Learning Representations
(ICLR), 2020.

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. Mc-
Candlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-
shot learners,” in Advances in Neural Information Processing Systems (NeurIPS),
vol. 33, 2020, pp. 1877–1901.

[11] Y. Guo et al., “Scaling laws for reasoning in large language models,” arXiv preprint
arXiv:2501.01234, 2025.

[12] X. Hu et al., “Reinforcement learning for reasoning in llms,” arXiv preprint
arXiv:2501.02345, 2025.

[13] A. Jaech et al., “Towards reasoning-centric reinforcement learning for llms,” arXiv
preprint arXiv:2412.04567, 2024.

XI

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

[14] Z. Zhang et al., “100 days after deepseek-r1: A survey of reasoning-focused rein-
forcement learning for llms,” arXiv preprint arXiv:2503.01234, 2025.

[15] T. Gao et al., “Rl with verifiable rewards for large language models,” arXiv
preprint arXiv:2502.05678, 2025.

[16] L. Liu et al., “Nover: Reinforcement learning without explicit verifiers,” arXiv
preprint arXiv:2502.07891, 2025.

[17] H. Sun et al., “Ktae: Key-token advantage estimation for rl with verifiable re-
wards,” arXiv preprint arXiv:2503.03456, 2025.

[18] Y. Zhao et al., “Intuitor: Reinforcement learning from internal feedback,” arXiv
preprint arXiv:2503.05678, 2025.

[19] J. Li et al., “Rlsc: Reinforcement learning via self-confidence,” arXiv preprint
arXiv:2503.07812, 2025.

[20] R. Agarwal et al., “Entropy minimization for intrinsic reward learning in llms,”
arXiv preprint arXiv:2503.08901, 2025.

[21] J. Baur et al., “Visulogic: Verification-free reasoning in llms,” arXiv preprint
arXiv:2504.01234, 2025.

[22] D.-A. Team, “Deepseekmath: Scaling open-source math reasoning with group rela-
tive policy optimization,” arXiv preprint arXiv:2402.03300, 2024.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” in arXiv preprint arXiv:1707.06347, 2017.

[24] Leibniz Supercomputing Centre, “High performance computing at lrz,”
2025, accessed: September 2025. [Online]. Available: https://doku.lrz.de/
high-performance-computing-10613431.html

[25] Karlsruhe Institute of Technology, “Horeka supercomputer user documentation,”
2025, accessed: September 2025. [Online]. Available: https://www.nhr.kit.edu/
userdocs/horeka/

[26] Friedrich-Alexander-Universität Erlangen–Nürnberg, “Hpc clusters at fau,” 2025,
accessed: September 2025. [Online]. Available: https://hpc.fau.de/systems-services/
documentation-instructions/clusters/

[27] Alibaba Cloud, “Qwen2.5 llm: Extending the boundary of llms,” 2025,
accessed: September 2025. [Online]. Available: https://www.alibabacloud.com/
blog/qwen2-5-llm-extending-the-boundary-of-llms 601786

[28] ——, “Qwen2.5-1.5b-instruct,” 2025, accessed: September 2025. [Online]. Available:
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct

[29] ——, “Qwen2.5-3b-instruct,” 2025, accessed: September 2025. [Online]. Available:
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct

XII

https://doku.lrz.de/high-performance-computing-10613431.html
https://doku.lrz.de/high-performance-computing-10613431.html
https://www.nhr.kit.edu/userdocs/horeka/
https://www.nhr.kit.edu/userdocs/horeka/
https://hpc.fau.de/systems-services/documentation-instructions/clusters/
https://hpc.fau.de/systems-services/documentation-instructions/clusters/
https://www.alibabacloud.com/blog/qwen2-5-llm-extending-the-boundary-of-llms_601786
https://www.alibabacloud.com/blog/qwen2-5-llm-extending-the-boundary-of-llms_601786
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct

Learning from Within: Hidden-State Dynamics as Rewards for Training LLMs

[30] ——, “Qwen2.5-7b-instruct,” 2025, accessed: September 2025. [Online]. Available:
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

[31] hiyouga, “Math12k,” 2024, accessed: September 2025. [Online]. Available:
https://huggingface.co/datasets/hiyouga/math12k

[32] P. Projects, “Jinja2 templating engine,” 2025, accessed: September 2025. [Online].
Available: https://jinja.palletsprojects.com/en/stable/

[33] SymPy Development Team, “Sympy: Symbolic mathematics in python,” 2025,
accessed: September 2025. [Online]. Available: https://www.sympy.org/en/index.
html

XIII

https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/datasets/hiyouga/math12k
https://jinja.palletsprojects.com/en/stable/
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html

	Introduction
	Machine Learning
	Parameters and Learning
	Training Process
	Types of Machine Learning
	Evaluation

	Large language models
	Next-Token Prediction
	Training Objective
	Decoding Strategies

	Transformers
	Learnable Parameters
	Input Representation
	Masked Self-Attention
	Advantages for LLMs

	Related Work
	Reinforcement Learning for LLMs
	RL with Verifiable Rewards (RLVR) for LLMs
	RL for LLMs without External Rewards

	Methodology
	Reinforcement Learning for LLMs
	Group Relative Policy Optimization (GRPO)
	From Hidden-State Dynamics to an Intrinsic Reward

	Implementation
	System Architecture
	Technology Stack
	Rationale and interactions

	Intrinsic Reward Computation
	Training Loop with Relative Advantages
	Hybrid Execution
	Data Flow and Batching
	Evaluation and Diagnostics
	Complexity and Scaling

	Experiments
	Hardware and Infrastructure
	Hyperparameters
	Models
	Dataset
	Baselines
	Evaluation Metrics

	Results
	Reward–Correctness Alignment
	Task-Level Performance with Intrinsic Reward

	Conclusion and Future Work
	Appendix
	Training Hyperparameters
	Example Metadata Entry

	Electronic appendix

