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Abstract

Tremendous supply of online content puts a strain on users by overburdening their capabilities to
filter interesting content. Therefore, over-the-top providers recognized a growing need for per-
sonalized recommendations. Especially in fast-paced domains, such as news, up-to-date filtering
is crucial for user satisfaction. The domain of news recommendation features two characteristics
setting it apart from many other recommendation applications: a dynamically changing corpus
of items and user preference, and, rewards not necessarily coupled to immediate click-through
rates. Thus, we describe a novel approach recently introduced by Zheng et al. [60] that explicitly
considers these two limitations of prior recommendation engines in a deep Q-learning approach
with Dueling Bandit Gradient Descent for exploration. Furthermore, we adapt the application
of the presented deep Q-network to ZDFMEDIATHEK.
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Figure 1: Recommendations in ZDFMEDIATHEK

1 Introduction

Recent improvements in communication technology and increasing user interests in non-linear
streaming services have led to an enormous growth in online content, especially in Over-The-
Top (OTT) media services. OTT services directly distribute content to users without intermediary
distributors or platforms. For instance, Covington et al. [9] describe video recommendations out
of a huge corpus for over a billion users of YouTube and Zheng et al. [60] points to a similarly
scaled volume of items in Google News. This tremendous amount of online content can be
overwhelming for users, providing too many choices for a user to grasp an overview of all the
content provided. Thus, personalized content recommendation improves user experience by
narrowing the corpus of content for the user to efficiently decide on which content to consume
next. Specifically, OTT television services such as ZDFMEDIATHEK1 put much manual labor into
curation of the contents in their media platform. Automation of this time-consuming task could
free resources for more content production or improved quality assurance.
Contrary to many recommendation scenarios in other domains including online shopping and

movie databases, news recommendation needs to rapidly adapt to a changing corpus of news
to recommend, since news are outdated quickly. According to Zheng et al. [60], news are only
of interest during the first 4.1 hours after publication. Furthermore, user preference in certain
topics of news often changes over time [60]. For instance, a user may be interested in weather
updates in the morning and a daily recap in the evening. Furthermore, preferences may change
over larger periods of time, e.g., during different seasons or events such as soccer tournaments.
These dynamics are impossible to handle manually and further prove the necessity of automation
in news recommendation at ZDFMEDIATHEK.
Besides, personalized recommendations directly impacts economical development of a plat-

form: Lamere and Green [25] reported that 35% of all sales on Amazon originated from recom-
mended products and Das et al. [10] increased traffic on Google News by 38% by introducing a
personalized recommender system. Similarly, ZDF as a publicly held company aims to increase
usage of ZDFMEDIATHEK in order to defend public funding into its services and, possibly, advo-
cate increased public funding in the future. Therefore, ZDFMEDIATHEK already shows a row of
recommendations on its home page, as shown in Figure 1. Typically, these recommendations
are ranked individually for each user.
Recommender systems take into account the content already consumed by a certain user in

order to recommend them new items from a corpus of consumable items. Such systems solely
relying on content, i.e., Content-Based (CB) approaches, often exhibit inferior performance com-
pared to techniques utilizing both content similarities and user similarities, i.e., Collaborative

1 ZDFmediathek: https://zdf.de
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Figure 2: Reinforcement Learning in Recommender Systems

Filtering (CF) approaches. While improving on CB systems, CF approaches consider user prefer-
ences as static and, thus, are limited in their effectiveness in the dynamic nature of news recom-
mendations. For instance, a user may be very interested in news about a particular thunderstorm
approaching his location, which does not necessarily indicate a long-lasting user preference in
thunderstorms. Besides, CB approaches require a dense item-to-item similarity matrix and CF
techniques are based on user-item matrices. Data for these matrices is often sparse and, thus,
most prior work does not handle the fast pace of news items appearing and becoming irrelevant.
Furthermore, both CB and CF maximize immediate rewards such as click-through rates instead
of taking into account long-term benefits such as user activeness on the platform or user return
patterns. To counter these limitations, recent approaches in news recommendation utilize Deep
Learning (DL) to learn more complex user-item interactions and apply Reinforcement Learning
(RL) for considering expectations of future rewards in addition to immediate rewards [31; 60].
The aforementioned combination of improvements in user experience, increase in productivity

and economic growth through recommendations and limitations of state-of-the-art approaches
convinced ZDFMEDIATHEK to implement a DL based approach specifically for news recommenda-
tions. Zheng et al. [60] propose a novel approach using Deep Q-Learning to solve the online
personalized news recommendation problem. News recommendation requires a system to han-
dle dynamic changes instead of a static corpus of content, user activity instead of click labels and
diversification instead of recommending similar items. Therefore, Zheng et al. [60] propose a
Double Dueling Deep Q-Network (DDQN) framework to solve these challenges by continuously
retraining through RL, explicitly considering future reward, maintaining a user activeness score
and pursuing more exploration using a Dueling Bandit Gradient Descent (DBGD) method.
RL adequately handles a dynamically changing corpus of news and user preferences by con-

tinuously retraining the learning model. Figure 2 depicts the interaction of the recommender
system with the users in a RL context. The recommender system provides recommendations to
the users. Afterwards, the users provide feedback on the recommendations by either explicitly
rating or implicitly clicking and consuming the recommended items. The recommender system
receives this feedback as reward for the provided recommendations and, furthermore, receives
an updated state with current user preferences and an extended corpus of news to recommend.
Obviously, this system has a drawback: in the beginning, the recommender system needs to
provide recommendations without “knowing” the state and reward. We handle this cold-start
problem by pre-training the DDQN in an offline simulator based on recorded user interactions in
ZDFMEDIATHEK.

2



Corpus
of News

Candidate
Generation

Ranking

User &
Context

Item List

Figure 3: Candidate Generation in Recommender Systems [c.f., 9, p. 2]

The underlying Deep Q-Network (DQN) of Zheng et al. [60] utilizes Q-learning to decide on a
ranking for recommended items. The DQN assigns a Q-value to each item in the corpus denoting
the item’s probability of bearing a high reward, i.e., being clicked or increasing user activeness
on the platform. Unfortunately, this requires each item in the corpus to be put into the DQN to
predict a Q-value. Since this does not scale well for large corpora, we only calculate Q-values
for a pre-determined set of candidates. Figure 3 shows the pipeline starting with the corpus of
news. Next, the pipeline passes the candidate generation that reduces the amount of items to be
considered in the ranking step. This ranking step produces a ranked list of recommended items
considering the context and the requesting user’s preferences and history. In other domains apart
from news recommendation, complex candidate generation methods may be necessary. But due
to the very dynamic nature of news, which are outdated after only 4.1 hours, naïvely selecting
the freshest news as candidates is adequate [60]. Furthermore, we represent states and actions
in continuous spaces, allowing for consideration of previously unknown state and action features
in the recommendation procedure. Thus, the DQN appropriately handles arbitrary candidates.
To sum up, we aim to recreate the DDQN approach by Zheng et al. [60] featuring two du-

eling Deep Q-Networks in a double Deep Q-Network architecture and an exploration DQN in
Dueling Bandit Gradient Descent. Unfortunately, recreation of published papers’ results is often
complex and challenging, although it assures scientific confirmability and interpretability [3].
Furthermore, we aim to adapt this approach to a similar domain, ZDFMEDIATHEK, which provides
sufficient data and allows to test transferability of the DDQN agent to similar domains.
The following thesis is structured as follows: first, section 2 examines existing approaches

and provides preliminaries for Reinforcement Learning, Deep Learning and the combination of
both in Deep Q-Networks. Second, we present our model architecture of the DDQN adapted for
ZDFMEDIATHEK in section 3. Next, we discuss implementation details and evaluation details in
section 4 and section 5 respectively. Finally, we present closely related work in section 6 and
come to a conclusion in section 7.

3
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2 Background

Since news recommendations are a very narrow field of studies, we reference prior work on
generating recommendations in general, narrowing down to Reinforcement Learning based ap-
proaches and, finally, name a few news recommendation techniques. Furthermore, we provide
the theoretical fundamentals required for the Double Dueling Deep Q-Network utilized in our
technique.

2.1 Prior Work

Recommender systems have been studied extensively, providing numerous existing approaches.
These approaches include content-based filtering [39], matrix-factorization-based methods [11;
24; 30; 53], logistic regression [36], factorization machines [19; 40] and, recently, deep learning
models [9; 31; 54; 60].
Content-based filtering recommends items by considering content similarity between items

[39]. In contrast, Collaborative Filtering (CF) recommends items preferred by users with simi-
lar behaviour and assumes that similar users tend to provide the same ratings for items. Thus,
conventional CF-based methods rely heavily on existing ratings to calculate similarities in order
to provide reliable recommendations and, therefore, are prone to errors through scarce data.
Recommender systems often make use of advanced CF-based methods such as Matrix Factor-
ization (MF). MF represents both items and users as vectors in the same space [11; 24; 30;
53]. Besides, recommendation may be presented as binary classification problem, i.e., whether
to recommend an item or not. Logistic Regression (LR) solves such binary decision problems.
However, LR-based approaches are „hard to generalize to the feature interactions that never
or rarely appear in the training data“ [c.f. 31, p. 3]. Conversely, Factorization Machines (FM)
show promising results even on scarce data by modeling pairwise feature interactions as inner
product of latent vectors corresponding to features. Recently, the complex feature interactions
for recommendation procedures were learned by deep learning models [9; 31; 54; 60].

Contextual Multi-Armed Bandits for Recommendations
Additionally to previously mentioned approaches, Contextual Multi-Armed Bandit (MAB) mod-

els were utilized to generate recommendations [7; 27; 52; 57; 59]. MABs are a group of recom-
mender systems, that select a different arm, i.e., recommendation technique, for each request
based on the probability of this arm’s recommendations yielding a high reward. In Contextual
MABs depicted in Figure 4a, the bandit considers the context, i.e., certain features concerning the
bandit’s task, when selecting one of its arms. For news recommendations, this context contains
both user and item features. Zeng et al. [57] already considers dynamic user preferences varying
over time.
However, all previously named approaches, including CF, MF, LR, FM, and, Contextual MABs,

face two limitations regarding news recommendations.

1. These approaches consider the user’s preference as static and aim to learn this preference
as precise as possible.

In news recommendation, user interest is especially volatile and even changes in the course of a
single day [60]. Thus, the recommendation procedure cannot be modeled as static process.

2. Furthermore, all aforementioned techniques aim tomaximize immediate rewards, e.g., user
clicks.

5
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Figure 4: Comparison of Contextual Multi-Armed Bandit and Markov Decision Process

Only considering immediate rewards could harm recommendation performance in the long term.
In addition to immediate rewards, we aim to account for long-term benefits of recommendations
such as increasing user activeness on the platform under consideration.

Reinforcement Learning for Recommendations
Furthermore, Reinforcement Learning (RL) was applied to recommendation scenarios as

Markov Decision Process (MDP) models. In the MDP, an agent selects actions based on his percep-
tion of the environment to improve the agent’s position in the environment. The agent’s position
is calculated based on reward received from the environment after presenting the selected ac-
tions. As shown in Figure 4b, a recommender system acts as the agent in RL recommendations.
The agent’s action space is represented by the item space from which the recommender system
selects the best items to present to the users, who act as an MDP environment. Based on the
recommended items, users generate rewards for the recommender system, e.g., by clicking rec-
ommended items. Next, the recommender system receives this reward and, in contrast to the
previously described Contextual MAB, also perceives the new state created through the recom-
mender’s user interaction. The recommender system continuously adapts its recommendation
policy to generate recommendations yielding a higher reward.
Contrary to Contextual MABs, agents in an MDP are capable of considering potential future

rewards [60]. Many previous approaches try to model the items as state and the transition
between items as action, leading to an exploding state space for larger corpora of items [32; 34;
41; 45; 49]. Furthermore, training these models is limited by sparse transitions data [31; 60].
In contrast to prior work, we design continuous state and action spaces, which allows for scaling
of the corpus of news and is robust to sparse interaction data.

6
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2.2 Preliminaries

Since our technique combines multiple machine learning paradigms, such as a Q-learning ap-
proach to Reinforcement Learning and Artificial Neural Networks in a Deep Learning manner,
we first introduce the theoretical fundamentals of these paradigms. Next, we describe how these
paradigms are combined in a Deep Q-Network for Deep Reinforcement Learning.

2.2.1 Reinforcement Learning

An agent in a Reinforcement Learning (RL) scenario interacts with its environment over time,
thus, the agent reinforces its behaviour by continuously learning new information based on its
(inter-)actions and the environment’s reaction. A Reinforcement Learning agent is formalized
in the Markov Decision Process (MDP). We define an MDP as (S,A,P,R,γ) with

• S denoting the state space,

• A denoting the action space,

• P : S×A× S 7→ [0, 1] denoting the state transition function,

• R : S×A× S 7→ R denoting the reward function, and,

• γ denoting the discount rate

of the agent [1; 28; 29; 31; 48]. Figure 5 visualizes an agent in an MDP: At each time
step t, the agent receives a state st ∈ S and selects an action at ∈ A following a policy
πθ (at |st) : S×A 7→ [0, 1] describing the agent’s behavior. In the next time step, the agent
receives state st+1 ∈ S, following the agents behavior (selection of a) and environmental dynam-
ics modeled in P (st , at , st+1). Finally, the agent receives a reward rt according to the reward
function R (st , at , st+1).

Temporal Difference Learning
Generally, an agent in an MDP aims to find an optimal policy (π∗ : S×A 7→ [0, 1]) which

maximizes the expected cumulative rewards from any state s ∈ S, i.e.,

V ∗(s) =max
πθ
Eπθ

¨∞∑
t=0

γt rt

«
. (1)

7



Here, V ∗(s) is the value of state s under the optimal policy, Eπθ is the expectation under policy
πθ , t is the current time step and rt is the reward at time step t discounted by the discount rate
γ. Discounting by γt values immediate rewards higher than expected future rewards to account
for uncertainty of the future.
A central aspect of RL is temporal difference learning, which allows to learn the value function

V (s) directly from the temporal difference error V (st+1) − V (st) through value iteration of the
Bellman approximation

Vs← r + γmax
a′∈A

Vs′ (2)

for each tuple of state s, action a, reward r for the action and next state s′ [47]. The Bell-
man approximation in Equation 2 approximates the Bellman equation of optimality V0 ←
maxa∈1...N (ra + γVa) which Richard Bellman proved to always find the optimal policy [2]. For
smoother convergence of Vs, we blend old and new values

Vs← (1−α)Vs +α(r + γmax
a′∈A

Vs′) (3)

given a constant step-size parameter α ∈ (0, 1], also known as learning rate in the machine
learning context [26; 28; 29; 48, pp. 25, 97].

Q-Learning
Equivalently to maximizing V (s) in temporal difference learning, an agent in an MDP may

maximize the expected cumulative rewards from any state-action pair {(s, a) | s ∈ S, a ∈A}, i.e.,

Q∗(s, a) =max
πθ
Eπθ

¨∞∑
t=0

γt rt

«
. (4)

Here, Q∗(s, a) is the value of taking action a in state s under the optimal policy, Eπθ is the
expectation under policy πθ , t is the current time step and rt is the immediate reward at time
step t discounted by the discount rate γ. Again, discounting is applied to account for uncertainty
of the future.
Similarly to value iteration, we can directly learn Q(s, a) from the temporal difference error in

a process named Q-Learning through the Bellman approximation

Qs,a← r + γmax
a′∈A

Qs′,a′ (5)

since V ∗(s) =maxa Q∗(s, a) holds [48, pp. 51, 107; 56]. Analogous to value iteration, we blend
old and new values of Qs,a for smoother convergence

Qs,a← (1−α)Qs,a +α(r + γmax
a′∈A

Qs′,a′). (6)

The basic form of Q-learning is tabular Q-learning, which describes learning a state-action
table of Q-values, where each cell contains the Q-value for the respective action in the corre-
sponding state. Thus, the table includes return values of Q(s, a) for all combinations of s and
a. For instance, in a game of Tic-Tac-Toe each row of the table corresponds to one state of the
board and each column of the table represents putting a marker on one of the fields. Tabular
Q-learning starts with an empty table in state s0 and repeatedly performs the Bellman update as
described in Equation 6 to fill the cells [26, p. 121]. After multiple iterations of Q-learning, the
agent’s Q-table may contain similar Q-values to the following table:

8



Q-Table of Tic-Tac-Toe

State
Top
Left

Top
Center

...
Center
Center

...
Bottom
Right

s0 = 0.8 0.4 ... 0.1 ... 0.7

s1 =
×

0.0 0.1 ... 0.9 ... 0.2

... ... ... ... ... ... ... ...

Here, bold Q-values represent the best action in each state, i.e. maxa Q(st , a). Thus, as shown
in the first row, the agent would start the game by putting its marker in the top left cell of the
board, i.e., argmaxa Q(s0, a). If the agent needed to react to the out-coming state s1 as shown
in the second row, the agent would put its marker into the center of the board. We omitted all
further states and actions for comprehensibility.
Naturally, learning a Q-table works well for relatively small and static state and action spaces

such as Tic-Tac-Toe. For large state and action spaces as in recommender systems, the Q-table
approach is by far too memory-intensive. Furthermore, Q-tables cannot handle dynamic state
and action spaces and struggle with sparse information. Thus, recommendations are only pos-
sible with a more efficient and robust approach, e.g., by approximating the Q-function with an
Artificial Neural Network.

Sutton and Barto [48] provide proves and an in-depth explanation on Reinforcement Learning
beyond the scope of this thesis. Additionally, Géron [12] and Lapan [26] provide insight about
practical implications of RL, temporal difference learning and Q-learning.

2.2.2 Neural Networks & Deep Learning

As Deep Learning (DL) is a specialized technique utilizing Artificial Neural Networks (ANNs),
we first describe the foundations of neural networks. An ANN consists of a multitude of artificial
neuronswhich are connected through synapses as shown in Figure 6, following the nomenclature
of a human brain [21]. Each neuron has one or more inputs, an activation threshold and at least
one output that sends a signal via a synapse to another neuron upon activation. The connection
of multiple neurons and synapses is called perceptron. Usually, perceptrons are organized into
multiple interconnected layers in a Multilayer Perceptron (MLP), the base architecture of a trivial
ANN.
Formally, a neuron has multiple inputs x1, x2, ..., xn weighted with corresponding weights

w1, w2, ..., wn, as depicted on the left side of Figure 6. Additionally, each neuron has a bias,
represented by (+1)× w0. The neuron calculates the sum of the bias and all weighted inputs,
i.e., w0 +
∑n

i=1 wi x i. This sum is used as input of the neuron’s activation function σ. Here, σ
acts as an activation threshold that controls whether the neuron is activated and “fires” a signal
to all dependent neurons.
The right side of Figure 6 shows the interdependence of neurons. The neurons are organized

into layers. Here, the inputs I1, I2, I3 each reach one neuron in the input layer. Each neuron in
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Figure 6: Artificial Neuron in a Multilayer Perceptron [51]

the input layer then applies its activation function and feeds the output to all neurons in the
so-called hidden layer, which is not “visible” from the outside because no inputs or outputs are
connected to its neurons. Each neuron in the hidden layer applies its activation function to its
inputs and feeds the result to both neurons in the output layer. Finally, the neurons in the output
layer produce the outputs O1, O2 by applying their activation functions. Naturally, this model is
called Multilayer Perceptron since it is a perceptron consisting of multiple layers of neurons, or
Feed-Forward Neural Network, since all synapses feed-forward to the following layer instead of
allowing recurrent connections.
The number of neurons per layer determines the width of this layer, while the number of layers

determines the depth of the neural network. Deep Learning utilizes “deep” neural networks, thus,
ANNs with multiple hidden layers [14].
Such ANN is usually trained through a process called backpropagation [44, p. 1]. Basically,

backpropagation trains an ANN by adjusting the weights of the synapses between neurons „in
proportion to the product of their simultaneous activation“ [c.f. 35, p. 1], thus, „propagating
corrections back towards the sensory end [i.e., input layer] of the network if it fails to make
a satisfactory correction quickly at the response end [i.e., output layer]“ [43, p. 292]. Since
backpropagation adjusts the weights through gradient descent on the ”propagated corrections“,
all activation functions in the ANN need to be differentiable.
First, the network is fed-forward from the input layer to the output layer with a training ex-

ample to infer a prediction. During the feed-forward step, each neuron stores its output and
partial derivatives of its activation function for each input. At the output layer, a loss function
E is applied to the predicted output and the expected output, calculating the error. Afterwards,
this error is backpropagated iteratively through the network: for each weight wi j at the synapse
from neuron i with output oi to neuron j the gradient of the loss function is calculated as

∂ E
∂ wi j

= oi
∂ E
∂ oiwi j

= oiδ j (7)

where δ j denotes the backpropagated error up to neuron j. Once all partial derivatives of E have
been computed, the weights wi j are updated via gradient descent:

w∗i j = wi j − γoiδ j (8)

with learning rate γ to only train the network towards the current training example but keep
experience from previous examples.
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Rojas [42] more thoroughly describes and proves the backpropagation algorithm in more com-
plex network architectures and various forms of model formalization, i.e., in matrix form.

2.2.3 Deep Reinforcement Learning

Deep Reinforcement Learning describes approaches utilizing Deep Learning to train an agent in
a Reinforcement Learning context, which has already proven to be beneficial in music recom-
mendation [54] and YouTube video recommendation [9].
Often, Deep Learning techniques are utilized to approximate the Q-value described in sub-

subsection 2.2.1 in an approach named Deep Q-Network (DQN) [38]. To achieve this, an ANN
is used for the agent’s implementation. Since ANNs require vast amounts of training data, the
agent may be pre-trained on historical data of interactions from a similar agent with the envi-
ronment before starting the actual RL process to refine the agent over time. Afterwards, this
ANN is an approximator for the Q-function under the optimal policy Q∗(s, a) (c.f., Equation 4).
In a recommendation scenario, the RL terminology may be replaced by the corresponding

terms from recommender engines. As shown in Figure 7, wemap the recommendation procedure
onto a sequential decision making problem where the recommender acts as an agent, providing
recommendations instead of actions to users, who act as an Environment by providing feedback
on the recommendations via clicks, ratings or consumption times. The recommender uses the
quantified user feedback as reward for past recommendations to improve in the future.
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3 Technique: DDQN

Previous methods lack key features for news recommendation, especially regarding adaptability
to a dynamically changing corpus of content, consideration of user activity and activeness in-
stead of click labels or ratings and diversification to also present different, up-to-date news and
prevent formation of a filter bubble [60]. Therefore, we examine a novel approach by Zheng
et al. [60] specifically designed for news recommendation and adapt the approach to data and
requirements found in a commercial real-world scenario: ZDFMEDIATHEK2. The news domain of-
fers a specifically large corpus of items for recommendation. Furthermore, this corpus of news
items is very dynamic, requiring continuous updates of the recommendation engine. Besides,
user preferences change quickly based on context, i.e., time of day, day of week or season. For
instance, a user may only be interested in soccer during international tournaments, requiring the
recommender engine to explicitly consider user preference in the recommendation procedure.
Figure 8 presents a conceptual view on our technique. Naturally, we depend on the corpus of

news shown in the top left. Besides, we clearly differentiate between an offline part on the left
and an online part on the right. Here, we apply machine learning terminology, where “offline”
learning has access to all data from the beginning in contrast to “online” learning, where data
becomes available sequentially during the training process.

2 ZDFmediathek: https://zdf.de

13



Corpus
of News

Candidate
Generation

Ranking

User &
Context

Item List
* 200

1 & 200

10

Figure 9: Candidate Generation in ZDFMEDIATHEK [c.f., 9, p. 2]

In offline training, we train the Deep Q-Network (DQN) on examples extracted from a click log
of previously recorded user interactions with ZDFMEDIATHEK. Then, we deploy the trained DQN
into real-world recommendation and online learning in ZDFMEDIATHEK. This section covers both
offline and online training of the DQN and describes the architecture of our agent in Markov
Decision Process (MDP).

3.1 Recommendation Pipeline

In ZDFMEDIATHEK we have access to an enormous amount of news to recommend to the user. If
we were to input all of the news into a neural network, we would immediately reachmemory and
calculation limits of state-of-the-art hardware. Thus, we optimize the recommendation pipeline
by injecting a candidate generation before actually considering any news for recommendation. As
depicted in Figure 9, the candidate generation step acts as a funnel in the process, dramatically
reducing the size of considered news to 200 candidates. Here, we select the newest 200 news
from the corpus, because news are outdated after only 4.1 hours [60]. The amount of news
selected here is arbitrary, although it massively impacts model size. The model size is constraint
by memory capacity and performance limits, thus, a sufficiently small number of candidates is
required.
Our technique covers the following ranking step, which ranks the provided candidates under

consideration of provided user and context features to produce a list of the 10 best items. Again,
the decision for 10 items is arbitrary. Independently of the length of the output list, we learn
Q-values for all 200 provided items and, thus, only filter and rank the top 10 items afterwards.
This cutoff represents a threshold to divide between relevant items presented to the user and
irrelevant items held back.
To sum up, our technique performs only the ranking step in Figure 9 on sufficiently small

candidate sets to adhere to memory constraints. We consider candidate generation as given,
which could be optimized in future work.

3.2 Model Architecture

The base architecture for our model is a Deep Q-Network (DQN). Figure 10a conceptually shows
a basic Deep Q-Network, which only consists of fully-connected sequential layers. Thus, all layers
of the DQN are combined to form a function approximator for Q(s, a). Directly approximating
Q(s, a) often yields overoptimistic values for estimated Q-values [55].
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Figure 10: Comparison of Network Architectures [based on 51]

For improved performance, we use the advanced dueling Deep Q-Network (dueling DQN)
architecture, which splits value function V (s) and advantage estimation A(s, a) into dueling
branches within the model, as shown in Figure 10b [55]. The branch for advantage estima-
tion A(s, a) in the center top of Figure 10b receives both state features s and action features
a. In contrast, the branch for value estimation V (s) in the bottom center of Figure 10b re-
ceives only those features describing state s. In the output, both advantage prediction and value
approximation are recombined into Q-value estimations Q(s, a) = V (s) + A(s, a).
Here, the advantage A(st , a) denotes only the estimated delta between V (st) and V (st+1). Thus,

V (st+1) = V (st)+A(st , a) holds iff the prediction of A(st , a) is correct, i.e., for the optimal advan-
tage estimation and value function V ∗(st+1) = V ∗(s)+A∗(st , a). As shown in subsubsection 2.2.1,
V ∗ (s) =maxa Q∗(s, a) holds for the optimal Q-estimation and value function, implying that

max
a

Q∗(st+1, a) = V ∗(st+1) = V ∗(st) + A∗(st+1, a) (9)

holds. Therefore, we are allowed to split the Q-estimation into value function and advantage
estimation to improve prediction performance over the DQN [26, p. 191; 55].
Furthermore, our approach features two DQNs, i.e., a double Deep Q-Network (double DQN).

Both DQNs in the double DQN share the same architecture, independently of the underlying
DQN architecture, e.g. plain or dueling DQN. One of the networks in the double DQN, the q-
network, acts as conventional DQN, i.e., selecting the highest-rated items based on its predicted
Q-values. In contrast to single-network DQNs, the second network of a double DQN, the target
network, rates the selected actions of the first network. Based on the target network’s ratings,
we adapt the Q-learning Bellman update introduced in section 2 from

Qs,a← r + γmax
a′∈A

Qs′,a′ c.f., Equation 5

⇒Q(st , at) = rt + γmax
a

Q(st+1, at + 1)
(10)

to the following form by incorporating Q-estimations eQ from the target network:

Q(st , at) = rt + γmax
a
eQ(st+1, argmax

a
Q(st+1, a)) (11)
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where argmaxa Q(st+1, a) denotes the best action selected by the Q-network, i.e., the highest-
rated action a in state st+1. In maxa eQ(st+1, ...) the target network re-evaluates action a from
the Q-network by assigning its own Q-value to the action selected by the Q-network. The target
network’s Q-value is then used for the Bellman update of Q(st , at) by discounting it with γ and
adding the reward rt . Using this adapted Bellman update with double DQN effectively counters
overestimation tendencies of DQN approaches [50]. As described before, we improve robustness
of the Bellman update by blending old and updated values together via a learning rate α:

Q(st , at) = (1−α)Q(st , at) +α(rt + γmax
a
eQ(st+1, argmax

a
Q(st+1, a))) (12)

Our Double Dueling Deep Q-Network (DDQN) combines the double DQN approach with a
dueling DQN architecture. Thus, we have both Q-network and target network in a double DQN,
which share the same dueling DQN architecture with differing weights.

3.3 Input Features

As shown in Figure 11 we utilize four different kinds of features to compute Q-values for all
provided news features. The four kinds of features are mapped onto the input layers of a DDQN.
These features include user features, news features, context features, and interaction features.

News features describe news entries in ZDFMEDIATHEK in a mostly one-hot encoded form, in-
cluding publication and editorial dates (in seconds since January 1st, 1970), video metadata,
visibility information, and one-hot encoded brand ids and news types. In total, these features
are 367-dimensional.

Context features describe the context of a news request, i.e., the date and time when the
request happens and the freshness of accompanying news features at that time, i.e., time
delta from publish date until request time. Both these times are given as absolute timestamps
in seconds since January 1st, 1970 and, additionally, the freshness is provided in relative years,
months, days, and hours in 38-dimensional feature vectors.

Interaction features describe past interactions of users with news items. These features con-
sist of the amount of viewing minutes, a coverage score, and 18 one-hot encoded genres.
Here, each 20-dimensional feature describes one user-news interaction, i.e., one click on a
news item or one play event of a video in ZDFMEDIATHEK.
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User features describe the interests of users in a mostly one-hot encoded form analogous to
the format of news entries. A user is represented as the aggregated interactions within the past
hour, past 6 hours, past day, past week, and past year relative to a given request time. These
five aggregations are concatenated, giving a 1920-dimensional feature vector, which equals
five times the size of news features without video duration and user-news features without
viewing minutes and coverage.

Each request to the DDQN recommendation engine requires one user feature, for whom the
requests are provided, several news features as candidates to draw the recommendations from,
a context feature for each provided news candidate and multiple user-news features for consid-
eration of the user’s recent interactions.
Figure 12 shows an actual summary of the network from a trained Tensorflow model with

exact dimensions of each layer given as tuple. The first value of a dimension tuple denotes the
batch size, which is always None until instantiation of the model. The last value of a tuple is the
feature length, i.e., the length of a single feature vector. If the tuple contains three values, the
center specifies the cardinality of feature vectors provided per request. Here, we provide 200
news and context features per request with 367 and 38 dimensions and twenty 20-dimensional
interaction features, but only one 1920-dimensional user feature per request.

One-Hot Encoding
The input features aremostly one-hot encoded, because neural networks only consider floating

point literals and, thus, cannot work with categorical data. For example, the categorical input
“brand”, which specifies the specific studio that created a news item, is provided as alphanu-
merical id (heute-19-uhr-102) and name string (heute 19:00 Uhr) in the original input data. To
use such categorical data as input to a neural network, we have to encode it into floating point
literals or tensors.
For instance, we may assign an integer to each brand and store this mapping brandi → i in

a process called label encoding. This would create legal inputs to our DDQN, but the ordering
within the mapping could influence prediction performance. Effectively, we would bias the net-
work to consider brands mapped to 1 and 2 to be “more similar” than brands mapped to 1 and
5 [12].
Therefore, we encode the brands with one-hot encoding. Here, we assign a mapping brandi →

(a0, ..., an), ai = 1, a j = 0 : j ̸= i. The created vector (a0, ..., an) of size 1×n for n brands contains
only one “hot” 1 at index i and n − 1 “cold” zeros at all other indices. Thus, all brands are
orthogonal to one another in n-dimensional space, i.e., (a0, ..., an) · (b0, ..., bn) = 0.
However, one-hot encoding introduces two new disadvantages into our system. First, one-

hot encoded features are vastly larger than label-encoded features. While label-encoding only
requires a scalar for n categories, one-hot encoding requires a 1×n vector. Furthermore, one-hot
encoding is static after initial mapping, i.e., we cannot expand an established one-hot encoding
to more categories. For instance, we only consider a certain set of known “brands” for our
one-hot encoding. If ZDFMEDIATHEK decides to add an additional brand to this set, we have to
completely retrain the model with a larger vector for brands or set the brand to an all-zero vector
for all newly-added brands. Nonetheless, the advantage of orthogonality between categories
outweighs resource concerns. Moreover, categorical features such as brand are mostly static at
ZDFMEDIATHEK.
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Figure 12: Model Architecture of the Double Dueling Deep Q-Network
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3.4 Network Layers

Each of the four Input layers (user, interactions, context, news) is directly connected to a single
Flatten layer. Flatten transforms n×m matrices into 1× (nm) vectors by concatenating all rows
into a single row. For instance, all 200 news features of 367 dimensions are transformed into a
single 73400-dimensional vector.
After flattening, all features share the same batch size and cardinality, i.e., only one row.

This allows for concatenation of the features in the third layer of the DDQN as displayed in
Figure 12. Here, we divide the features into state features and action features. State features
represent the current state s, while action features are only relevant for action a. Since we
split value calculation V (s) and advantage estimation A(s, a) in a dueling DQN architecture, we
build one layer combining only the state features and one layer combining both state and action
features. Layer dueling_state_features concatenates only the flattened versions of the state
features user and context. In contrast, advantage_features concatenates both flattened state
and flattened action features, i.e., user, context, interactions, and, news.
The following layers are split into dueling branches of V (s) and A(s, a), which we describe sep-

arately below. The branches are then merged into the final Q-value prediction layer as explained
below.

Advantage Prediction
The advantage prediction A(s, a) utilizes a simple sequential model of 3 layers. The first of

these layers is the Dense layer hidden_advantage_prediction, i.e., all inputs in this layer are
fully connected to all outputs. This layer reduces the immense 83320-dimensional combination
of action and state features from the advantage_features layer into 512 neurons.
The next layer, lrelu_advantage_prediction, keeps these 512 dimensions, but uses a special

LeakyReLU activation function instead of the default activation wx + b with layer weights w,
input x and bias b as defined in section 2. In contrast, the LeakyReLU (also known as LReLU)
given in Equation 13 especially improves performance in deeper networks and is more robust to
vanishing gradients than ReLU [33].

LReLU(x) =max(wT x , 0) =

¨
wT x wT x > 0

0.01wT x else
(13)

ReLU (Rectified Linear Unit), as defined in Equation 14, outputs 0 in the second case. This
completely deativates a neuron and may lead to it never being learnt through through gradient
descent in backpropagation. Hence, the neuron effectively vanishes from the network, naming
this the vanishing gradient problem. LeakyReLUs improve upon this weakness by always activat-
ing marginally instead of outputting 0. Thus, LeakyReLUs are learnt in gradient descent, even if
they are “inactive”.

ReLU(x) =max(wT x , 0) =

¨
wT x wT x > 0

0 else
(14)

Figure 13 illustrates the difference between ReLU and LReLU activations. For demonstration in-
telligibility, Figure 13b has a larger “leak” of 0.1 instead of 0.01 in the second case of Equation 13.

19



−2 −1 0 1 2

0

1

2

(a) Rectified Linear Unit (ReLU)

−2 −1 0 1 2

0

1

2

(b) Leaky Rectified Linear Unit (LReLU)

Figure 13: Comparison of ReLU Activations

Following the LeakyReLU layer, another Dense layer reduces the 512 inputs to 200 outputs.
Here, 200 denotes the number of Q-values the network should predict. This is equal to the
number of provided news candidates in the news input layer. In a normal DQN, this layer could
be the final output layer, optionally followed by a normalizing Layer such as Softmax. In contrast,
our dueling DQN features a dueling value prediction branch.

Value Prediction

The value prediction V (s) only uses state features provided by the dueling_state_features
layer. First, we reduce these 9520 dimensions to 512 dimensions in the
dueling_hidden_state layer. Next, we further reduce the 512 dimensions to a single
value in dueling_value_prediction, i.e., we directly calculate V (s) here.

Q-Value Prediction

Afterwards, both branches for value prediction V (s) and advantage prediction A(s, a) are com-
bined through the following Lambda layer:

q_value_prediction = Lambda(lambda x: x[0] - mean(x[0]) + x[1],
output_shape=(num_actions ,),
name="q_value_prediction")
([q_value_prediction ,

dueling_value_prediction])

This Lambda layer applies the lambda function given in its first parameter list to the
layers given in its second parameter list. The lambda receives the prediction results
of the layers [q_value_prediction, dueling_value_prediction] as parameter x, hence,
x[0] - mean(x[0]) calculates an averaged value of the Q-value Q(s, a) for each news item pro-
vided and x[1] adds the value V (s). This calculation results in an output shape of the Lambda
layer of num_actions= 200 which is the total amount of Q-values that should be computed.
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3.5 Loss Function

The loss function determines, which metric is minimized during training of the network. Thus,
the loss function defines the objective of the trained network. Therefore, the loss function needs
to fit the problem definition.
Furthermore, since the DQN trains via gradient descent of the loss function, the loss depends

on the state of the Q-network’s weights. Since these weights are unknown before training,
we initialize the network with randomized weights. Usually, this results in bad predictions,
i.e., recommendations, and a high loss. Although reinforcement learning enables training the
DQN in its real-world environment, we aim to maximize user satisfaction in ZDFMEDIATHEK. To
counter this cold-start problem, we insert offline pre-training before deploying the DDQN agent
to ZDFMEDIATHEK. In offline pre-training, our agent only replays recorded click logs, thus, only
one item is clicked at a time and and the agent cannot influence user decisions. Thus, we present
two different lsos functions for offline pre-training before deployment and online training of the
agent in production, fitting the respective use cases.

3.5.1 Categorical Cross-entropy Loss

Tensorflow’s categorical_crossentropy consists of two steps: It adds a Softmax activation to
the network and applies the cross entropy cost function to the Softmax result.
First, categorical cross-entropy applies the Softmax function to the 200 Q-value predictions.

Softmax is a normalizing function applying a Boltzmann distribution to the inputs [4; 5; 13] such
that all resulting values sum up to 1. Equation 15 defines the Softmax function for multi-label
classification [12]. p̂k is the per-class probability of bearing the highest value. sk(x) denotes
the score of class k for instance x, i.e., the output of the previous layer q_value_prediction at
index k. The output then contains probabilities for each class to be of highest value, i.e., the
probability for each input news item to receive a high reward upon recommending them to the
user [20].

p̂k =
exp(sk(x))∑

j∈K(s j(x))
(15)

Second, categorical cross-entropy performs loss calculation with the cross-entropy cost function
presented in Equation 16 [12]. Here, Θ is the parameter set of the neural network we are
training, thus, we search for an optimal Θ to minimize the cross entropy cost function J(Θ). Θ
is a matrix containing parameter vectors θ (k) for each class k that could be predicted, i.e., for
each candidate that could be recommended. Equation 16 already accounts for training batches
by averaging cross entropy loss over all m examples in the batch. For each example, the cross
entropy is calculated based on true label y (i) and predicted probability p̂(i) per class k.

J(Θ) = − 1
m

m∑
i=1

K∑
k=1

y (i)k log(p̂(i)k ) (16)

In offline pre-training, where our training data only contains clicked items, i.e., only one item
during each prediction should be predicted, we opt for the categorical cross-entropy loss func-
tion. The categorical loss entropy, or multi-class log loss, is optimized for cases where only one
class should be predicted, i.e., multi-class classification problems. Categorical cross-entropy ex-
cels at multi-class classifications, because Softmax boosts the highest prediction and relaxes all
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other predictions. For optimization of Θ, we perform training of the whole DDQN with categor-
ical cross entropy loss function and the Adam optimizer. Adam is a robust and efficient method
non-convex optimization problems in machine learning [22].

3.5.2 Binary Cross-Entropy Loss

In cases, where more than one item should be predicted, i.e., multi-label prediction, Softmax
negatively influences performance. In multi-label classification, all predictions should be con-
sidered independently of one another. Thus, we use Tensorflow’s binary_crossentropy loss
function.
Binary cross-entropy first applies a Sigmoid, or logistic, activation to the network’s outputs.

Equation 17 shows, that calculation of each class’ probability p̂k to be predicted only depends on
the score sk(x) for that class from the previous layer q_value_prediction and is independent
from all other classes (c.f., s j(x) in the Softmax calculation in Equation 15) [12].

p̂k =
1

1+ exp (−sk(x))
(17)

Next, binary cross-entropy calculates the loss using a logistic regression cost function given in
Equation 18, sometimes called “log loss” [12]. Similar to the cross-entropy cost function, this
function averages all examples i in a batch of size m to minimize the networks parameters θ . In
contrast to the cross-entropy loss, we only have one vector of parameters θ in log loss instead
of a matrix Θ of per-class parameters θ (k).

J(θ ) = − 1
m

m∑
i=1

�
y (i) log (p̂(i)) + (1− y (i)) log (1− p̂(i))

�
(18)

In online training, i.e., when the DDQN agent is deployed to ZDFMEDIATHEK, we expect multiple
user clicks on a single list of recommendations. Thus, we opt for the binary cross-entropy loss
function, which supports this kind of multi-label classification.

3.6 Reward

As defined in the MDP, our DDQN agent receives a reward for every performed recommendation.
With this reward, the agent is retrained towards a potentially higher-valued policy. Thus, the
reward depends on the agent’s success in recommending useful items, and the loss function
assessing the DQN’s performance.
For effective DQN training, we model the reward as a tensor of the network’s output shape.

Hence, we assign a reward to each predicted Q-value. As we define two different loss functions
for offline and online training, we also specify distinctive offline and online rewards.
Furthermore, we aim at increasing user activeness, which we model as long term reward to be

maximized by the DDQN agent. However, the agent cannot influence user activeness in offline
training. Thus, user activeness only contributes to the online reward.

3.6.1 Offline Reward

In offline pre-training, where the click logs only provide one clicked item per record, we opted for
the categorical cross-entropy loss function. Thus, all predictions of the DQN are normalized by a
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Softmax function such that the sum of all predicted Q-values is 1. In the reward designated for
offline training, we need to respect that Softmax normalization. Therefore, we create true labels
from the click logs to train the network, which take the place of rewards in the offline case. Here,
we simply provide a one-hot encoded true label that is 1 at the clicked news candidate index and
0 for all other news candidates. This ensures that the sum of all values in the true label always
equals 1 to account for the Softmax normalization in categorical cross-entropy. Specifically, we
online define this immediate reward from user clicks rcl ick in offline training. Thus, the total
reward is trivially defined as follows:

rtotal = rcl ick (19)

3.6.2 Online Reward

In the online case, we aim at increasing long-term user satisfaction in addition to immediate
rewards from clicks. As user satisfaction is not directly measurable, we calculate a user activeness
score, that increases for highly active users and decreases for inactive users. Incorporating user
activeness into the reward ensures that the agent develops a recommendation strategy benefiting
the users in the long term.

User Activeness
We aim at increasing long-term benefits from recommendations by maximizing user active-

ness. Usually, users send multiple requests to a news platform in a short period of time, before
leaving for several hours or days [60]. We consider each user request as user return to the plat-
form and aim at increasing the amount of user returns. Therefore, we calculate user activeness
by applying survival models to predict user return [17; 18; 37]. The hazard function given in
Equation 20 denotes the rate of instantaneous user return at time t given that the user returns
at time T and did not return until t, i.e., T >= t [60].

h(t) = lim
d t→0

Pr{t <= T < (t + d t) | T >= t}
d t

(20)

With this hazard function, we define the survival function3 S(t), calculating the probability of
user return after time t [37; 60]:

S(t) = exp

�
−
∫ t

0

h(τ)dτ

�
(21)

Next, we calculate the expected time until user return T0 from Equation 21 [37; 60]:

T0 =

∫ ∞
0

S(t)d t (22)

We set a constant probability of user return h(t) = h0 and update S(t) = S(t) + Sa on each
user return [60]. Furthermore, we adopt parameters suggested by Zheng et al. [60] based on
real user return patterns:
3 Originally, the survival function denotes the probability of survival beyond time t given a rate of instantaneous

death h(·).
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Figure 14: User Activeness Estimation for a User

S0 = 0.5 denotes random initial probabilities of user return.

T0 = 24 hours marks a daily user return to the news platform.

h0 = 1.2× 10−5s−1 is calculated from Equation 21 and Equation 22.

Sa = 0.32 increases the calculated user activeness by 0.32 on each user return, ensuring that
a daily click returns the user to the initial state, i.e., S0 = S0 exp (−h0T0) + Sa.

Next, we clip user activeness by {0, 1} to prevent underflow into negative activeness and over-
flow in short sessions of high-frequency requests. Figure 14 shows the resulting user activeness
estimation for an exemplary user compared to the baseline of one daily visit. Although the user
visits more frequently after 18 hours, the user’s activeness is truncated to 1.

Online Reward
Since we aim at maximizing both immediate and future rewards, i.e., click through rates and

user activeness, we combine click rewards and rewards from user activeness:

rtotal = rcl ick + β ract iv e (23)

Here, rcl ick may contain more than one user click for a request. Thus, rcl ick is multi-hot encoded,
i.e., one-hot encoded for every clicked news candidate. β weighs future rewards, which Zheng
et al. [60] set to 0.05, and rac t iv e = S(t) is the scalar activeness score added to each component
of rcl ick. Since components of rcl ick are either 0 or 1, and the activeness score ract iv e and β are
in {0, 1}, individual components of the resulting rt otal are in {0, 2}.
In online training, we opted for the binary cross-entropy loss function normalizing each Q-

value independently to {−1, 1} through a Sigmoid function. Therefore, we clip all rewards in the
online case per news candidate such that each Q-value lies in {−1, 1}. Instead of normalization,
clipping does not decrease rewards for specific items, thus, conserving rewards for lower-rated
items.
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3.7 Exploration

Training the aforementioned model with gradient descent enforces exploitation of experience,
i.e., the model always generates predictions bearing high rewards in the past. In the short term,
this may boost model performance, but it renders predictions ineffective in dynamic environ-
ments. Therefore, we apply exploration to gain experience from new or less recommended
items and prevent formation of a filter bubble for the user.

3.7.1 Epsilon-Greedy

ϵ-greedy is a simple exploration strategy that randomly selects items with a probability of ϵ. This
approach effectively pursues exploration using only very limited resources. ϵ-greedy exploration
usually starts with a high ϵ0 of 1.0, i.e., the system recommends only random items at the begin-
ning of training to quickly build up varying experience. During training, ϵ is gradually annealed
to 0.05 over a certain number of steps. More specifically, at each step i ∈ {0, n− 1} when an-
nealing over n steps, the ϵ-greedy strategy updates ϵi+1 = ϵi − ϵ0n until the pre-defined final ϵn
is reached. Thus, for all steps i >= n the system only recommends random items in 5% of the
requests, which commonly shows good performance [12].
We implemented an ϵ-greedy exploration strategy as described above, although it does not

benefit the base model in the long term, i.e., ϵ-greedy does not improve our DDQN agent itself.
Thus, our main approach features an exploration network in Dueling Bandit Gradient Descent
as proposed by Zheng et al. [60] explicitly for news recommendation.

3.7.2 Dueling Bandit Gradient Descent

Zheng et al. [60] propose a new exploration strategy for the DDQN approach improving over
the trivial ϵ-greedy approach. Instead of randomly selecting items for recommendation, an ex-
ploration network proposes items for recommendation.

Exploration Network
The exploration network is a clone of the Q-network described above, with altered weights.

Equation 24 shows how the exploration network’s weights are disturbed based on the Q-
network’s weights W . Weights W are multiplied by a random number between −1 and 1 and an
explore coefficient ρ ∈ {0, 1}.

∆W = ρ · rand(−1, 1) ·W (24)

To receive the exploration network weights fW , we finally add the random ∆W to the original
weights W in Equation 25 and assign these weights to the exploration network.

fW =W +∆W (25)

Upon each request for recommendations, the DDQN agent then predicts a list of items L with
the Q-network that is ranked by the predictions from the target network as described before.
Additionally, the exploration predicts a second list of items eL. The agent then applies probabilistic
interleave to merge both lists [16]. The resulting list contains the highest-ranked items from both
L and eL which is presented to the user as recommendation list [60].
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Probabilistic Interleave
In general, interleaving covers merging multiple lists into a single list. Contrary to alternative

approaches such as balanced interleave or team draft, probabilistic interleave does not directly
merge two lists L and eL. Instead, probabilistic interleave constructs the interleaved list from two
Softmax functions s and es produced by two rankers. Softmax ensures that all items from L and eL
have non-zero probability of being selected by either ranker and smoothes the expected rewards
for all items in the lists. Here, Hofmann et al. [16] propose a Softmax function based on the
reversed power of the rank of each item d in list L from the combined set of items D = L ∪eL, as
defined in Equation 26.

p̂d =
r(d)−τ∑

d′∈D r(d ′)−τ (26)

This variant of Softmax boosts valuation of top ranks and decreases latter ranks to emphasize
the importance of recommending highly-rated items. τ controls how quickly probabilities de-
crease over the ranks, which Hofmann et al. [16] set to 3. Probabilistic interleave applies this
Softmax function to all items in L and eL. For each rank of the interleaved list, one of the resulting
Softmax functions s or es is randomly chosen and provides an item d based on its ranking, while
the assignment of either s or es to this rank is saved. Afterwards, the chosen item is removed
from both lists L and eL. Then, s and es are calculated again, based on the smaller lists, until the
interleaved list reaches the desired length.
By saving the assignment of s or es to each rank of the resulting list, evaluation properly

attributes later clicks on the corresponding items to the correct ranker, i.e., to the DDQN or
exploration network in our case.

Dueling Bandit Gradient Descent
At training time, we compare whether items from exploitation list L or exploration list eL

received more user clicks. If items from the original list L received more clicks, we keep the Q-
network as-is. In contrast, we update the Q-network towards the exploration network according
to Equation 27 if items from the exploration network’s list eL received more user clicks. We
calculate new weights W ′ for the Q-network based on the original weight W , the exploration
weights fW and a exploitation coefficient η ∈ {0, 1} controlling the blending.

W ′ =W +ηfW (27)

To sum up, the exploration network acts as a dueling agent to the DDQN. By merging the
weights towards the improved network, the agent performs gradient descent over the networks’
prediction performances or the received rewards respectively. Combined, we call this Dueling
Bandit Gradient Descent (DBGD).
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Figure 15: Conceptual View on the Technique in MDP

4 Implementation

We implemented the Double Dueling Deep Q-Network (DDQN) as described in section 3 using
Python, machine learning frameworks in Python such as Numpy, Pandas and Scikit-learn, and
the machine learning API Keras on top of the Tensorflow backend.

Specifically, we split implementation into offline simulation and online real-world phase as
shown in Figure 15, where an offline simulator environment uses historical data to simulate
an online scenario for training and evaluation purposes, and an online real-world environment
covers live user interactions in ZDFMEDIATHEK. Thus, the simulator environment allows for an
agent in offline training to act as if it were in online training, which replaces the offline part of
Figure 15 with a simulated online part.

Furthermore, we implemented multiple agents covering different or all parts of our DDQN
approach and ϵ-greedy or Dueling Bandit Gradient Descent (DBGD) exploration strategy: an
offline agent that directly trains the Q-network on training examples, and an online agent with
DDQN that either applies v arepsilon-greedy exploration or DBGD with an exploration network.
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# Use tensorflow:1.14 as base image
FROM tensorflow/tensorflow:1.14.0-gpu-py3

# install most python dependencies via pip
RUN pip3 install --user numpy scipy matplotlib ipython jupyter pandas \

sympy nose scikit -learn dataclasses tqdm pydot ml_metrics flask pulp

# install git and graphviz via apt
RUN apt-get update -y
RUN apt-get install git graphviz -y

# install python dependencies via git
RUN pip3 install --user git+https://github.com/mpkato/interleaving.git

Figure 16: Dockerfile preparing our Tensorflow docker image

4.1 Frameworks

We implemented the DDQN described in section 3 in Keras4 for Python, a high-level API for ma-
chine learning tasks leveraging the Tensorflow backend5. More specifically, we targeted Python
3.7, Tensorflow r1.14 and the accompanying tf.Keras module, a Keras implementation directly
included in Tensorflow. Instead of a manual Tensorflow installation, we used the recommended
tensorflow-gpu docker image, which we extended to our needs through the dockerfile provided
in Figure 16. Naturally, this dockerfile extends the tensorflow:1.14.0-gpu-py3 docker image,
which is the GPU-capable, Python3-compatible version of the Tensorflow 1.14 docker image, and
installs several python libraries via python’s PIP and the graphviz visualization tool via Ubuntu’s
APT package manager. We use these additional python libraries for extended preprocessing out-
side of the Tensorflow context and graphviz for creation of the architectural overview shown in
Figure 12. This dockerfile enables the docker build command to correctly build our image, e.g.,
via

$> docker build -t vkuhn/tenserflow -extended:1.14.0-gpu-py3 .

tagging the new image as vkuhn/tenserflow-extended:1.14.0-gpu-py3.
The defined Q-network is summarized by Keras in Figure 17. In total, this network has

47,638,217 (trainable) parameters, i.e., layer weights and biases. Furthermore, Figure 17 de-
scribes the layer’s dimensions and connections, i.e., previous layer to each layer. This summary
is ultimately identical to the network architecture presented in section 3. The target network
and exploration network share the exactly same definition with distinct weights.

4 Keras: https://keras.io/
5 Tensorflow: https://www.tensorflow.org/
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Model : ”model ”
__________________________________________________________________________________________________
Layer ( type ) Output Shape Param # Connected to
==================================================================================================
user ( InputLayer ) [(None , 1920)] 0
__________________________________________________________________________________________________
contex t ( InputLayer ) [(None , 200 , 38)] 0
__________________________________________________________________________________________________
i n t e r a c t i o n s ( InputLayer ) [(None , 20 , 20)] 0
__________________________________________________________________________________________________
news ( InputLayer ) [(None , 200 , 367)] 0
__________________________________________________________________________________________________
f l a t _ u s e r ( F l a t t en ) (None , 1920) 0 user [0][0]
__________________________________________________________________________________________________
f l a t _ c on t e x t ( F l a t t en ) (None , 7600) 0 contex t [0][0]
__________________________________________________________________________________________________
f l a t _ i n t e r a c t i o n s ( F l a t t en ) (None , 400) 0 i n t e r a c t i o n s [0][0]
__________________________________________________________________________________________________
f la t_news ( F l a t t en ) (None , 73400) 0 news [0][0]
__________________________________________________________________________________________________
advantage_features ( Concatenate (None , 83320) 0 f l a t _ u s e r [0][0]

f l a t _ c on t e x t [0][0]
f l a t _ i n t e r a c t i o n s [0][0]
f la t_news [0][0]

__________________________________________________________________________________________________
hidden_advantage_predic t ion (De (None , 512) 42660352 advantage_fea tures [0][0]
__________________________________________________________________________________________________
due l i ng_ s t a t e _ f e a tu r e s ( Concate (None , 9520) 0 f l a t _ u s e r [0][0]

f l a t _ c on t e x t [0][0]
__________________________________________________________________________________________________
l r e lu_advan tage_pred i c t i on ( Lea (None , 512) 0 hidden_advantage_predic t ion [0][0]
__________________________________________________________________________________________________
due l ing_h idden_s ta te (Dense ) (None , 512) 4874752 due l i ng_ s t a t e _ f e a tu r e s [0][0]
__________________________________________________________________________________________________
advantage_pred ic t ion (Dense ) (None , 200) 102600 l r e lu_advan tage_pred i c t i on [0][0]
__________________________________________________________________________________________________
due l ing_va lue_pred i c t i on (Dense (None , 1) 513 due l ing_h idden_s ta te [0][0]
__________________________________________________________________________________________________
q_va lue_pred i c t i on (Lambda) (None , 200) 0 advantage_pred ic t ion [0][0]

due l ing_va lue_pred i c t i on [0][0]
==================================================================================================
Tota l params : 47 ,638 ,217
Tra inab le params : 47 ,638 ,217
Non−t r a i n ab l e params : 0
__________________________________________________________________________________________________

Figure 17: Keras Summary of the Q-network
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Input: Click logs L and news corpus C provided by ZDFMEDIATHEK,
length of user history considered for recommendation h,
amount of candidates used for recommendation c, and
length of recommendation list k

Output: Simulator memory M

Initialize M = {};
for l ∈ L do

Observe current state S;
Observe request time l.t;
Observe request user l.u;

Collect user interactions I = {i1, ..., ih} ⊂ L;
Build user feature U = {∑1_hour i,

∑
6_hours i,
∑

da y i,
∑

week i,
∑

year i : i ∈ L};
Select news candidates N = {n1, ..., nc} ⊂ C;
Calculate context for the candidates X = {x1, ..., x|N |};
Predict q-values for the candidates Q = {q1, ..., q|N |};
Calculate reward from prediction and click log R= {r1, ..., r|N |};
Add ((S, (I , U , N , X )→Q)→ R) to M ;

return M

Figure 18: Building simulator memory

4.2 Environment

We implemented two environments: a simulator environment for replaying historical click logs
and a real-world environment for live experiments in ZDFMEDIATHEK.

Simulator Environment
First, we implemented a simulator environment for Reinforcement Learning (RL) to train and

test our DDQN. Contrary to Shi et al. [46], we did not extend the Gym engine6, which is a
toolkit for developing and comparing RL algorithms which provides much overhead and requires
an additional installation currently not compatible with Microsoft Windows [6]. Instead, we
focused on simplicity and portability by building a simulator for RL that iterates historical click
logs provided by ZDFMEDIATHEK, requests for recommendations and checks whether the actually
clicked news is included in the recommendations list as shown in Figure 18 in an approach
similar to Zhao et al. [58].
Figure 18 describes how the agent’s memory is built in the simulator environment. The sim-

ulator has access to all historical click logs, the corpus of news and the lengths of provided user
history and candidates used for recommendation. For each entry in the click logs, the simulator
observes the state, time of request and user id. Based on these observations, the simulator builds
all features required for the DDQN as described in section 3: a set of historical user interactions,
a user feature, a set of news candidates, and, a set of context features. The simulator feeds
these features into the DDQN to receive predicted q-values for all candidates. Afterwards, the
simulator calculates a reward based on how the actually clicked item is ranked in the prediction.

6 OpenAI Gym: https://github.com/openai/gym
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All the features, prediction, reward, and, current state are then saved in the memory for later
memory replay.

Real-World Environment
Second, we implemented a real-world RL environment, which receives recommendation re-

quests via HTTP and responds with the predicted recommendation. Each request is temporarily
saved into memory. Afterwards, clicks are collected and appended to the requests in memory to
be used as rewards. With this information, the DDQN is periodically retrained, i.e., each hour,
to stay up-to-date with changing user interests and the dynamic corpus of news. Unfortunately,
we did not connect this environment with ZDFMEDIATHEK in time for this thesis. Thus, we are
evaluating on the simulator environment only.

4.3 Agent

Additionally, we designed two agents: an offline7 agent which fits the network to the click logs
instead of performing RL, and, an online agent which acts according to our technique presented
in section 3. While the online agent is required in an actual recommendation scenario within
the real-world environment, pre-training of the DDQN weights may be performed either using
the online or offline agent within the simulator environment.

Offline Agent
The offline agent solely trains the Q-network via Keras’ fit_generator function for training

a model on training data. Specifically, this offline agent trains the network for pure exploita-
tion and does not apply any exploration strategy. Although pure exploitation may harm model
performance, the offline agent is by far the simplest approach implementation-wise and profits
most from the optimized high-level API to model specification and training of Keras.

Online Agent
The online agent performs RL for the DDQN approach described in section 3. Besides, the

online agent either applies ϵ-greedy exploration or creates an exploration network for DBGD.
For RL and exploration, the online agent requires much more “manual” Python training code
than the offline agent, making it large and potentially inefficient.

7 Machine learning terminology: data becomes available sequentially in “online” learning compared to the entire
data being available in “offline” learning
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Figure 19: Conceptual View on the Simulator Environment

5 Evaluation

In this evaluation, we concentrate on the offline environment as we did not conduct experi-
ments with the real-world environment in time for this thesis. Thus, we test three different
models on offline data in the simulator environment and compare their performance in sim-
ulated Reinforcement Learning (RL): the offline agent, an online agent with Dueling Bandit
Gradient Descent (DBGD), and, an online agent with ϵ-greedy exploration. For the latter two
online agents, the simulator behaves as if the agents acted online, i.e., presenting rewards from
the simulator environment as shown in Figure 19.
Since the agent’s recommendations do not influence user behavior in click log simulation, we

resort to the offline reward defined in section 3. Specifically, this reward omits future user active-
ness, i.e., we only evaluate immediate rewards based on user clicks simulated by the simulator
environment.
First, we provide information about our setup of software and hardware used for evaluation.

Next, we defined the hyperparameters set for evaluation and describe our data and applied split
for training, validation and testing. Finally, we present evaluation results of the three evaluated
models.
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General Hyperparameters
Parameter Description Value Note

α Learning rate of Adam 0.001 Original value [22]
γ Discount factor of future rewards 0.4 Original value [60]
c Number of news candidates per request 200 Balance diversity & efficiency

h
Number of interactions history per

request
20 ZDFMEDIATHEK provides 20 interactions

|L| Number of items recommended per
request

10
Common value for recommendation

lists

Hyperparameters for ϵ-greedy Exploration
Parameter Description Value Note

ϵ0
Initial probability of random

exploration
1.0 Provided in [12, p. 632]

ϵn Final probability of random exploration 0.05 Provided in [12, p. 632]
n Steps to anneal initial to final ϵ 39836 20% of our training data

Hyperparameters for Dueling Bandit Gradient Descent
Parameter Description Value Note

ρ Exploration coefficient 0.1 Original value [60]
η Exploitation coefficient 0.05 Original value [60]
|eL| Number of exploration items 10 |eL|= |L| for probabilistic interleave

Table 1: Evaluation Hyperparameters

5.1 Experiment Setup

All experiments were conducted on a server with a Ubuntu 18.04 LTS installation featuring 256
GB of RAM and a Titan X (Pascal) graphics card with 12GB of on-board memory. As described
in section 4, we executed the DDQN in our docker image:

$> docker run --gpus all -d -it --rm -v ./zdf_dqn:/tmp \
-w /tmp/zdf_dqn_keras vkuhn/tensorflow -extended:1.14.0-gpu-py3 \
python3 -m zdf_dqn.main --train_dqn --test_dqn --multiprocessing

For the different approaches in out evaluation, we only appended few parameters: --offline to
stay offline in a networking sense, i.e., to use our simulator environment, --fit to use the Keras
model.fit_generator function, i.e., to chose the offline agent, and --e-greedy to use ϵ-greedy
exploration instead of DBGD.

5.2 Hyperparameters

The models we evaluated have different hyperparameters, i.e., parameters affecting the training
or exploration. In contrast to the parameters of the model such as layer weights, hyperparame-
ters are set beforehand and partially determine training and prediction performance. For almost
all hyperparameters, we set defaults recommended by papers introducing or evaluating the re-
spective approaches. We split the hyperparameters into three sets: general hyperparameters,
hyperparameters specific to ϵ-greedy exploration, and, hyperparameters specific to the explo-
ration network in DBGD. Table 1 gives an overview over all hyperparameters and presents their
values in the evaluation.
General hyperparameters affect all evaluated models. Here, we set Adam’s learning rate α =

0.001 to its original value introduced by Kingma and Ba [22] and the discount factor for future
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rewards γ to 0.4 as provided by Zheng et al. [60]. Additionally, we define the final model
size here by setting values for the amount of candidates, interactions and recommended items L,
such that they fit the ZDFMEDIATHEK domain and API requirements and offer enough diversity
in the candidates while keeping the model sufficiently small and efficient to be computationally
feasible on the provided hardware. Next, we define hyperparameters for ϵ-greedy exploration.
Annealing ϵ from 1.0 to 0.05 has proven good performance in practice [12]. We reach the final
ϵ after 39836 examples, which equals 20% of our training set. Furthermore, we define the
exploration coefficient ρ and exploitation coefficient η for DBGD of the Double Dueling Deep
Q-Network (DDQN) and exploration network as introduced by Zheng et al. [60]. Besides, the
exploration network should generate recommendations of the same length as the DDQN, i.e.
|eL|= |L|= 10.

5.3 Data

For training and evaluation, we use sampled data provided by ZDFMEDIATHEK. The sample con-
tains 72147 news items and 311221 clicklog entries. The clicklog entries were collected between
June 19, 2019 and June 22, 2019, i.e., the sample contains data of four consecutive days. We
split this data into three subsets: the chronologically last 20% are reserved for testing. After-
wards, we split the first 80% again into 80% train set and 20% validation set. The created train
set contains the chronologically first 199180 logged clicks, the validation set consists of the next
49795 clicklog entries and the test set resembles the remaining 62246 clicks.
Although cross-validation helps better estimate generalization of our model to unknown data

and, thus, productive model performance, we chose to chronologically split the data [23]. We
decided on a chronological split for better simulation of the RL task. This enables the model
to directly demonstrate the performance of its RL capabilities during training, validation and
testing phase.
Before feeding data into the network(s), we remove all text columns from the data, and apply

one-hot encoding on categorical columns as described in section 3.

5.4 Experiment Results

We determine the performance of all evaluated approaches by means of Mean Reciprocal Rank
(MRR), Discounted Cumulative Gain (DCG) and Top-k Categorical Accuracy.
The reciprocal rank evaluates, at which position in a list the first relevant item is placed. Here,

relevant items are those items clicked by the user. For the MRR, the reciprocal rank is evaluated
for a set of queries Q, which are requests for recommendations in our scenario. The MRR is
defined as the mean of the sum of all individual reciprocal ranks for queries in Q, i.e.:

MRR=
1
|Q|

Q∑
i=1

1
ranki

(28)

Here, ranki denotes the rank of the first relevant item in the recommendation list for query i.
The cumulative gain evaluates relevance of all results in an item list, which is discounted by

the rank of teh items in DCG. We define DCG as

DCGp =
p∑

i=1

reli

log2 (i + 1)
(29)
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Figure 20: Training Metrics: CP, DCG, Loss (CCE), MRR, MAP@10, Top-10 Cat. Acc.

where i marks the position of an item in the recommendation list, reli is the graded relevance of
the item at position i and p denotes the number of items that are considered in DCG calculation.
We set p to 10 as we are showing 10 out of the 200 news candidates to the user. For graded
relevance, we set 1 on items them user clicked and 0 otherwise.
The Top-k Categorical Accuracy is a categorization metric that measures whether the target

class is present among the first k items of a prediction. We define the clicked item of a clicklog
entry as target class for this metric and, again, set k to 10 to account for the length of recom-
mendation lists in our setup. Since we only have one clicked item in the click log at each time,
we may user this metric in the simulator scenario.

Figure 20 gives an overview of various metrics and the loss during training. The different
counts on the x-axis are due to implementation differences, that we did not resolve yet. However,
these graphs still provide an overview of the training performance of our evaluation models.
Green marks the offline agent, orange the ϵ-greedy online agent and pink denotes the DBGD
online agent. Strangely, the offline agent’s loss and metrics are always exactly 0, so we suspect
that our implementation of the Keras logging interface Tensorboard callback is incomplete.
However, for the ϵ-greedy and DBGD approaches, we notice trends: the agent with ϵ-greedy

exploration (orange) minimizes the categorical cross-entropy loss in the upper right of Figure 20
quicker and shows a more stable cosine proximity of prediction and true labels. Nevertheless,
this ϵ-greedy agent also decreases DCG, MRR, and, Top-k Categorical Accuracy during training,
which should increase towards 1. In contrast, the DBGD agent (pink) improves the latter three
metrics and shows similar cosine proximity, although its loss decreases only slightly. The jumps
in the cosine proximity of the DBGD agent most likely mark the times of exploration network
reset after Q-network retraining. Besides, we added a plot for Mean Average Precision (MAP)
at k (MAP@k), which is calculated by a Python library and, thus, cannot be directly included as
Tensorflowmetric. Therefore, we did not calculate MAP@k for the offline agent, which is trained
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Experiment Results

Model
Training
Time

Cosine
Proximity

DCG
Categorical
Cross-Ent.

MRR MAP
Top-k Cat.
Accuracy

Offline Fit 7h 0.00 0.00 0.00 0.00 - 0.00
ε-greedy 68h 0.94 0.14 -3.47e11 0.12 0.15 0.26
DBGD 156h 0.92 0.51 -1.53e10 0.42 0.15 0.80

Table 2: Experiment Results

by Keras fit_generator method that only evaluates Tensorflowmetrics efficiently. MAP@k with
k = 10 is the mean average precision of the top 10 values in a prediction, which exhibits an
equally stagnating trend for both ϵ-greedy and DBGD respectively.
These trends are also visible in the means of each metric over the training time. Table 2

provides the training times, and means of all metrics presented in Figure 20. Here, bold results
represent the best result within each column. Again, we notice very similar trends in Cosine
Proximity and MAP@10. In DCG, MRR and Top-k Categorical Accuracy, the approach utilizing
DBGD is far superior, although the ϵ-greedy approach further minimizes the categorical cross-
entropy loss.
Besides, Table 2 shows that training time of the ϵ-greedy is almost 10 times higher than train-

ing time of the offline agent. Furthermore, training time of the DBGD agent more than doubles
that of the ϵ-greedy approach. Both online agents require more training time, as the train-
ing method of the offline agent is heavily optimized by Tensorflow. However, the exploration
network and interleaving in DBGD adds additional computational complexity over the simple
ϵ-greedy exploration strategy.

Testing on an independent test set is required to consolidate our results from training. Al-
though these results seem to show improvement of DBGD over ϵ-greedy exploration, the im-
provements could stem from overfitting on our relatively small and temporally narrow training
data. Unfortunately, a bug in our test script in combination with long training and testing times
prevented the presentation of test metrics in this place, which remains as future work.
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Figure 21: Comparison of Deep Q-Network Architectures [c.f. 58]

6 Related Work

Our technique is heavily based on the DRN approach by Zheng et al. [60]. Mostly, we recre-
ated the Dueling Bandit Gradient Descent (DBGD) of Double Dueling Deep Q-Network (DDQN)
architecture and exploration network from Zheng et al. [60] and adapted the networks to the
features available in ZDFMEDIATHEK. In contrast to our evaluation, Zheng et al. [60] were able
to conduct online experiments in a real-world news recommender platform, indicating that the
DDQN approach with consideration of user activeness yielded better results in online recommen-
dation accuracy and diversity of recommended items than various compared models: Logistic
Regression (LR), Factorization Machines (FM), (Hidden) Linear Upper Confidence Bound, and,
several compositions of DDQN, ϵ-greedy, and, DBGD.

Actor-Critic Architecture
Besides the naturally related work of Zheng et al. [60], we consider actor-critic approaches

as closely related [31; 58]. While Zhao et al. [58] focus on comparison of Deep Q-Network
(DQN) architectures to present a framework for list-wise recommendations (LIRD), Liu et al.
[31] examine explicit user-item interactions modeling in their DRR method.
For instance, Zhao et al. [58] present three base architectures for Q-learning as shown in

Figure 21.The first architecture, shown in Figure 21a, receives only state features and outputs
Q-values for all possible actions. Therefore, this architecture is limited to small actions spaces.
Our approach uses the second type of architecture as shown in Figure 21b, although we calculate
200 Q-values at once instead of only the Q-value for a single action. Here, the DQN operates on
state and action features, but still has to calculate Q-values for all items in the action space. In
contrast, the actor-critic architecture presented in Figure 21c features two networks: the actor
network only decides on an action depending on the state and the critic network calculates a
Q-value only for the chosen action.
Liu et al. [31] utilized the actor-critic architecture to explicitly model user-item interactions

in a recommender system. In order to explicitly model interactions, Liu et al. [31] created
a state representation from the user’s interaction history, similar to the interaction inputs in
our approach. Then, the actor network generates a ranking function at as action, which ranks
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available items i1, ..., in by the scalar product a⊺it , where the item leading to the highest scalar
product is recommended to the user. Afterwards, the critic network predicts a Q-value Q(st , at)
for the action at to update the actor network towards maximizing Q(st , at).

In conclusion, the critic network is very similar to the target network in a DDQN approach.
However, replacing the Q-network of a DDQN by an actor may improve performance and scal-
ability on large data sets. Besides, Liu et al. [31] do not explicitly improve exploration. Thus,
we believe integration of both approaches, i.e., DBGD of an actor-critic recommender and an
exploration network, may benefit from the actors scalability and from the diversification of the
exploration network alike.
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7 Conclusion

We present a novel recommendation approach and exploration strategy based on the DRN frame-
work [60]. The incorporated Dueling Bandit Gradient Descent (DBGD) with an exploration net-
work promises better exploration and diversification in recommendations to prevent building of a
filter bubble for users. Furthermore, explicitly considering future rewards such as user activeness
should benefit long-term performance of the Reinforcement Learning (RL) agent. Unfortunately,
we were not able to evaluate online performance in time for this thesis.
However, our offline experiments hint at improved performance of DBGD of the Double Duel-

ing Deep Q-Network (DDQN) agent and an exploration network in terms of Discounted Cumu-
lative Gain (DCG), Mean Reciprocal Rank (MRR), and, Top-k Categorical Accuracy compared to
ϵ-greedy exploration. However, adding the exploration network vastly increases training time
due to its high computational complexity and additional storage of interleaving results. Since
we did not conduct reliable offline tests and online results to validate these results and negate
the suspicion of overfitting, these results are to be handled with care until consolidated.

In the future, we aim to conduct online experiments in ZDFMEDIATHEK to collect more robust
results about model performance. Besides, we plan to improve the training procedure for in-
creased performance, including introduction of proper multiprocessing in the RL simulator part,
upgrading towards the Tensorflow 2 API and transitioning to the Tensorflow Estimators API for
stability and deployability. Furthermore, we intend to improve model performance by learning
embeddings of categorical variables instead of one-hot encoding, or learn time-sensitive embed-
dings of the complete features [8]. This should result in a massively reduced model size and,
thus, enable faster training and prediction on the one hand or allow more candidates to be fed
into the model. Additionally, we plan to evaluate variable length inputs via LSTM layers, e.g.,
when a certain user has fewer interactions on record than expected by the interactions input
layer. Furthermore, word embeddings on so far discarded columns such as news title and lead
paragraph may result in improved recommendations by introducing more content similarity into
the approach. For instance, fastText8 offers pre-trained word embeddings for a large vocabulary
in 157 languages including German [15].

8 fastText: https://fastText.cc
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Acronyms

ANN Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CB Content-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
CF Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
DBGD Dueling Bandit Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
DCG Discounted Cumulative Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DDQNDouble Dueling Deep Q-Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
DL Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
DQN Deep Q-Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
FM Factorization Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
LR Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MAB Multi-Armed Bandit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MAP Mean Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
MDP Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
MF Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MLP Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
MRR Mean Reciprocal Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
OTT Over-The-Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
RL Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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